US009268651B1

a2 United States Patent 10) Patent No.: US 9,268,651 B1
Salyers et al. (45) Date of Patent: Feb. 23, 2016
(54) EFFICIENT RECOVERY OF STORAGE ;’8%’;@ gé gggi? Ezhghi fit al.
B) o et al.
GATEWAY CACHED VOLUMES 8,112,477 B2 2/2012 Rao etal.
. . 2008/0189774 Al 8/2008 Ansari et al.
(71) Applicant: Amazon Technologies, Inc., Reno, NV 2010/0125730 Al 5/2010 Dodgson et al.
(as) 2010/0146074 Al 6/2010 Srinivasan
2010/0290422 Al 112010 Haigh et al.
R . R 2012/0173558 Al* 7/2012 Sorenson, III 707/758
(72) InVentOrS. DaVld Carl Salyers5 Seattle’ WA ([JS)5 2015/0012706 Al E3 1/2015 Bllnlck """""""" G06F 12/0802
Ankur Khetrapal, Seattle, WA (US); T11/119
Pradeep Vincent, Kenmore, WA (US);
Kestutis Patiejunas, Sammamish, WA OTHER PUBLICATIONS
Us) U.S. Appl. No. 13/212,960, filed Aug. 18, 2011, James Christopher
. . Sorenson, 111, et al.
(73) Assignee: Amazon Technologies, Inc., Reno, NV U.S. Appl. No. 13/174,140, filed Jun. 30, 2011, James Christopher
(as) Sorenson, I1, et al.
U.S. Appl. No. 13/174,505, filed Jun. 30, 2011, James Christopher
(*) Notice: Subject to any disclaimer, the term of this Sorenson, III, et al.
patent is extended or adjusted under 35 Storsimple, “Cloud-integrated Enterprise Storage,” downloaded
U.S.C. 154(b) by 566 days. from www.storsimple.com/total-storage/ on Oct. 22, 2012, 1 pages.
(Continued)
(21) Appl. No.: 13/665,685
. Primary Examiner — Larry Mackall
22) Filed: Oct.31,2012 ’ Y
(22) Filed: ct- 31, (74) Attorney, Agent, or Firm — Robert C. Kowert;
(51) Int.Cl Meyertons, Hood, Kivlin, Kowert & Goetzel, P.C.
GO6F 12/00 (2006.01)
GO6F 11/14 (2006.01) 7 ABSTRACT
(52) U.S.CL Methods and apparatus for efficient recovery of cached vol-
CPC oo GOGF 11/1464 (2013.01) ~ umes at storage gateways are disclosed. To recover, after an
(58) Field of Classification Search unplanned shutdown, a storage gateway appliance configured
1S GOGF 3/067; GOGF 11/1464 'O cache chunks of a storage object, chunk metadata corre-
See application file for complete search history. sponding to a particular chunk is read into an in-memory
metadata region from a first metadata location. Based on
(56) References Cited analysis of the chunk metadata, a validation requirement indi-

U.S. PATENT DOCUMENTS

7,130,956 B2
7,340,639 Bl
7,340,652 B2
7,523,286 B2
7,624,170 B2
7,734,598 B2

10/2006
3/2008
3/2008
4/2009

11/2009
6/2010

Rao

Lee et al.
Jarvis et al.
Ramany et al.
Das et al.
Noguchi et al.

Start recovery after unplenned
shutdown, t bring appiiance
into runningfactive state 1201

!

Select next chunk G whose
metadata is to be examined

cation for the particular chunk is stored, and the chunk is
designated as being accessible for client /O requests. In
response to receiving a subsequent /O request targeted to the
particular chunk, the chunk metadata is validated using a
different metadata location prior to performing the requested
1/O operation.

23 Claims, 14 Drawing Sheets

]

Read cache disk's contiguous
metadata section for atleast
chunk C into memory 1204

Cisin Yes
“Urnknown' state?

No
SetC's state (e 9. inin-

memory meladals) as Nesds-
validation 1212

Tetadsta for all chunks has beef

Read C's inline metadata secions
from disk to generate valid in-
memory metadata 1251

axamined? 1214

Yes

Alow client VO operations to resume (in-memory metadata for chunks in "Needs-
validation” sate will be validated as needed n respanse o O requests, as
shown in FIG. 7 and FIG. 9) 1216

US 9,268,651 B1
Page 2

(56) References Cited

OTHER PUBLICATIONS

Nasuni Corporation, “What is Nasuni?,” downloaded from www.
nasuni.com/what__is__nasuni on Oct. 22, 2012, pp. 1-2.

TwinStrata, Inc., “Cloud Array® Cloud Storage Gateway Overview,”
downloaded from www.twinstrata.com/CloudArray-overview on
Oct. 22,2012, pp. 1-2.

Stephen Lawson, “Gluster Pushes Storage Software to VMware,
Amazon,” PCWorld online article, Feb. 7, 2011, pp. 1-3.

Krishnan Subramanian, “Gluster Introduces Scale-Out NAS Virtual
Storage Appliances for VMware and AWS,” CloudAve online article,
Feb. 9, 2011, pp. 1-3.

A. Epstein, D. H. Lorenz, E. Silvera, I. Shapira, “Virtual Appliance
Content Distribution for a Global Infrastructure Cloud Service,”
Infocom’10 Proceedings IEEE, Mar. 2010, pp. 1-9.

Liu, et al., “Low-cost application image distribution on worldwide
cloud front server,” Computer Communications Workshops
(Infocom Wkshps), 2011 IEEE Conference, Apr. 2011, pp. 1-6.

M. Armbrust, et al., “Above the Clouds: A Berkeley View of Cloud
computing,” Technical Report No. UCB/EECS-2009-28, University
of California at Berkley, USA, Feb. 10, 2009, pp. 1-23.

Stephanie Balaouras, “How the Cloud Will Transform Disaster
Recovery Services,” Forrester Research, Inc., Jul. 24, 2009, pp. 1-14.
U.S. Appl. No. 12/981,172, filed Dec. 29, 2010, Amazon Technolo-
gies, Inc.

U.S. Appl. No. 12/981,393, filed Dec. 29, 2010, Amazon Technolo-
gies, Inc.

U.S. Appl. No. 12/981,397, filed Dec. 29, 2010, Amazon Technolo-
gies, Inc.

U.S. Appl. No. 13/665,708, filed Oct. 31 2012, David Carl Salyers.
U.S. Appl. No. 13/174,156, filed Jun. 30, 2011, Amazon Technolo-
gies, Inc.

U.S. Appl. No. 13/174,524, filed Jun. 30, 2011, Amazon Technolo-
gies, Inc.

U.S. Appl. No. 13/174,172, filed Jun. 30, 2011, Amazon Technolo-
gies, Inc.

U.S. Appl. No. 13/327,605, filed Dec. 15, 2011, Amazon Technolo-
gies, Inc.

U.S. Appl. No. 13/174,203, filed Jun. 30, 2011, Amazon Technolo-
gies, Inc.

U.S. Appl. No. 13/174,513, filed Jun. 30, 2011, Amazon Technolo-
gies, Inc.

U.S. Appl. No. 13/665,709, filed Oct. 31 2012, David Carl Salyers.
U.S. Appl. No. 13/174,489, filed Jun. 30, 2011, Amazon Technolo-
gies, Inc.

U.S. Appl. No. 13/324,907, filed Dec. 13, 2011, Amazon Technolo-
gies, Inc.

U.S. Appl. No. 13/665,705, filed Oct. 31 2012, David Carl Salyers.
U.S. Appl. No. 13/665,707, filed Oct. 31 2012, Pradeep Vincent.

* cited by examiner

U.S. Patent Feb. 23,2016 Sheet 1 of 14 US 9,268,651 B1

server 130A server 130B| © © 7 | server 130N

L4 L)
[] []
[] []
. []
v Provider network :
1 105 Storage devices 1
; 122 ;
H Storage service 120 116 '
: H
[} [}
: 116D :
[} [}
[} [}
: :
: Internal network 140 H
: :
[] []
[] []
[] []
[] []
[] []
: :
: Intermediate Intermediate Intermediate H
E E
[} [}
[} [}
[} [}
[} [}
[} [}
[} [}
[} [}
L) 'l

External network(s) 144
(e.g., WANs)

Client network 165A

Client network 165B

’ v,

' Storage b Storage :
: 1180 | gateway o 118M | gateway ;
H appliance ' e appliance :
' Appliance 180A 8| Ao 180B :
' pp 1o0A s+ Appliance 16Ub H
s| storage 1 4| storage :
: bt gep) 118K 1181 ;
[} _—

; 118n | 1188 b — :
' ' !
; Client Client ' E Client Client ;
' 148A 1488 b 148K 148L :
: b :
H 1 1
' H H !
[y ¢ 3 J

FIG. 1

US 9,268,651 B1

Sheet 2 of 14

Feb. 23, 2016

U.S. Patent

¢ 9l4

731 9beiais souenddy

08z abei0)s Jaynqg peojdn 0Z¢ obei0s ayoe)
aoge 209¢) \\Ijn_omm \\)oomm
ASIP Jagng XSIP Jagng 3052
peojdn peojdn ysipayoe) | | ysip syoe)
909¢ V09) \.\mﬁﬂ \ﬁ}
ASIp Jsling ¥SIp Jayng T4
peoldn peoidn ¥sipsyoed | | ysip syoen
252 Jabeuew soepsju|
(1eBeuew yoysdeus) . ;
71 Jabeuew Jayng peojdn ¢0¢ JeDBUEW 000 XSIP 8YJED

C¢ 1001

72¢ Jossaooe solnss abeln)g

087 9oueydde Aemayeb abeinrg

US 9,268,651 B1

Sheet 3 of 14

Feb. 23, 2016

U.S. Patent

A

€ Old

Z0C $85SaIpPE ¥SIp 8y9es Buisessou|

9¢

o)
O

unyp

Y99¢€ Junyg

>

arre

H06E . V06¢ de9
deg
hS
[N2%3
[
uoIjI8s EjepelsW
snonbpuon

PPE SU0N108S BjepeIsLl suUlju|

Y

B1EPRISW SUIUI PUB SHUNLD BIEP J0) ZZ¢ 90eds abieio)g

U.S. Patent Feb. 23,2016 Sheet 4 of 14 US 9,268,651 B1

Disk-resident inline metadata

405 (logical combination of Disk-resident contiguous

Lt it Y
| JEp i —)
soooccnnsn.
| Ty pp——]

metadata sections 344) metadata 425
<
’
L4
L4
’
’
4
4
'l
Logically equiyalent dqr.ing i Contiguous metadata updated
normal operating conditions K4 asynchronously (e.g., during
’ controlled shutdown, evictions)
4
Eo """""""""" “:
! Memory-resident metadata
L}
' 415 '
H '
\ J

.
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[}
[]
[}
[]
[}
[}
[]
[}

FIG. 4

U.S. Patent Feb. 23,2016 Sheet 5 of 14 US 9,268,651 B1

Chunk metadata entries

AN

Metadata version ID 511

Cache disk ID 516

Cache entry instance ID 521

Data transform key 526

Volume ID 531

Volume offset 536

Chunk start disk address 541

State indicator 546

Block validity mask 551

Timestamp(s) 556

Invalid data pattern 561

Metadata CRC 571

FIG. 5

U.S. Patent Feb. 23,2016 Sheet 6 of 14 US 9,268,651 B1

For particular cached volume, determine size of volume subset to be cached,
chunk size, block size, inline metadata section size 601

'

Designate disk space for data blocks and inline metadata 604

Designate disk space for contiguous metadata 607

'

Upon cache miss caused by client I/O request directed to block, modify inline
metadata section(s) for block 610

Perform requested read/write operations, respond fo client 613

;

Asynchronously (e.g., as part of controlled shutdown or during cache eviction),
update contiguous metadata, €.g., based at least partly on inline metadata 616

l

After restart (e.g., subsequent to controlled shutdown), quickly determine block’s
and/or chunk’s state using contiguous metadata, e.g., without having to read
inline metadata 619

Yy

Allow client access to cached block(s) after determining state from contiguous
metadata 622

FIG. 6

U.S. Patent Feb. 23, 2016

Receive write request for
(Chunk C, Block B) 701

Chunk C presentin
cache? 707

Chunk Cin
Needs-validation state?
"3

Sheet 7 of 14

US 9,268,651 B1

Optionally, add upload buffer

— | entry, for upload of modified data

to remote storage service 704

Space for C available

in cache? 710 Yes

Wait for space to be freed (e.g.,
via forced eviction) 716

Validate C's metadata (e.g., based

on in its inline metadata sections),

update in-memory metadata for C
719

Block B previously
written to cache? 722

y

Initialize inline metadata for
block B in cache 725 (see FIG.
8)

+—l

Optionally, transform data of
block B using transform key

128

'

Write data of block B to cache

disk 731

FIG. 7

U.S. Patent Feb. 23,2016 Sheet 8 of 14 US 9,268,651 B1

Determine that block B of chunk
C is to be initialized in cache
801

'

Modify appropriate metadata
entries (e.g., block validity
mask, state indicator, and/or
CRC) in inline metadata
section(s) adjacent to block B
on cache disk 804

'

Identify and modify portions (if

any) of B that are to be filled

with invalidity indicator, e.g.,
invalid data pattern 807

!

Proceed to write valid data
portions of block B to cache
disk 810

FIG. 8

U.S. Patent Feb. 23,2016 Sheet 9 of 14 US 9,268,651 B1

Receive read request for Obtain at least a portion of C that
(Chunk C, Block B) 901 » includes B from remote storage
service 951

v

Search for free cache disk space for
C (e.g., “Unknown” state chunk)
954

Chunk C presentin
cache? 903

ree cache disk space
found? 957

Chunk Cin
Needs-validation state?

907
Initialize inline metadata, optionally
transform data, and write data >
block(s) to cache disk 971

Validate C’s metadata (e.g., based
on in its inline metadata sections),
update m-memo:y metadata for C Obtain at least a portion of C that

910 — includes B from remote storage

[« service 974

v

Update inline metadata, optionally
merge and/or transform block(s)
obtained from remote storage
service, and write data block(s) to

alid block B present
in cache? 913

cache disk 977
Read (and optionally, transform)
contents of B from cache 916
Return contents of B to requesting | J
client 919 B

FIG. 9

U.S. Patent Feb. 23,2016 Sheet 10 of 14 US 9,268,651 B1

Dirty-not-
logged 1009

Needs-
validation
1011

Restart after
uncontrolled shutdown
1080

P LA L LYY

FIG. 10

U.S. Patent Feb. 23,2016 Sheet 11 of 14 US 9,268,651 B1

Activate evictor, e.g., as
background or lower-priority [a———
process 1101

Sleep, e.g., for scheduled time
or until re-triggered 1106

No

Need to allocate
chunks? 1103

Allocate “UnUsed” chunks
1112

“UnUsed” chunks
available? 1109

[dentify eviction set of N chunks
(e.g., based on recency/
frequency of use, locality, clean
state); select size N of eviction
set to limit number of
“unknown” state entries 1115
Generate metadata for chunks
of eviction set, e.g., entry
instance Ds, transform keys,

invalid data patterns,“Unknown”
state entries 1121

'

Store metadata for chunks
(e.g., in one or more bulk or
combined write operations) in
contiguous metadata space on
disk 1131

Need to evict more
chunks? 1118

FIG. 11

U.S. Patent

Feb. 23, 2016

Start recovery after unplanned
shutdown, to bring appliance
into running/active state 1201

l

Select next chunk C whose
metadata is to be examined
1203

Sheet 12 of 14

<

l

Read cache disk’s contiguous
metadata section for at least
chunk C into memory 1204

Set C's state (e.g., inin-
memory metadata) as Needs-
validation 1212

etadata for all chunks has bee
examined? 1214

Read C's inline metadata sections
from disk to generate valid in-
memory metadata 1251

No

US 9,268,651 B1

Allow client I/O operations to resume (in-memory metadata for chunks in “Needs-
validation” state will be validated as needed in response to I/O requests, as
shownin FIG. 7 and FIG.9) 1216

FIG. 12

U.S. Patent Feb. 23,2016 Sheet 13 of 14 US 9,268,651 B1

Determine that read miss has occurred at storage
gateway appliance for block B of chunk C 1301

'

Initiate transfer of chunk C from remote storage service
to intermediate server over first network with bandwidth
B1 (e.g., high-bandwidth internal network) 1304

'

Determine which subsets of chunk C, in how many
distinct data transfers, and with what transfer priorities,
are to be transmitted to storage gateway from
intermediate server 1308

'

Perform any necessary transformations/computations on
received data and/or on data to be sent to appliance —
e.g., decompressing chunk C, compressing subsets to

be sent to storage gateway, decrypting chunk C,
encrypting subsets, verifying checksum on C, and/or
generating checksums for subsets 1310

l

Schedule determined number of data transfers to
storage gateway (including one transfer that includes
block B) over second network with bandwidth B2 (e.g.,
lower-bandwidth WAN) 1312

l

Store B and/or additional data sent from intermediate
server in cache disk storage at gateway if space is
available 1316

l

Provide B to requesting client 1320

FIG. 13

U.S. Patent Feb. 23,2016 Sheet 14 of 14 US 9,268,651 B1

Computing device

3000
Processor Processor Processor
3010a 3010b e 3010n

; : ;

/O interface 303

System memory 3020 Network interface

Code Data 3040
3025 3026 T

Other device(s)
3060

FIG. 14

US 9,268,651 Bl

1
EFFICIENT RECOVERY OF STORAGE
GATEWAY CACHED VOLUMES

BACKGROUND

Many companies and other organizations operate com-
puter networks that interconnect numerous computing sys-
tems to support their operations, such as with the computing
systems being co-located (e.g., as part of a local network) or
instead located in multiple distinct geographical locations
(e.g., connected via one or more private or public intermedi-
ate networks). For example, data centers housing significant
numbers of interconnected computing systems have become
commonplace, such as private data centers that are operated
by and on behalf of a single organization, and public data
centers that are operated by entities as businesses to provide
computing resources to customers. Some public data center
operators provide network access, power, and secure instal-
lation facilities for hardware owned by various customers,
while other public data center operators provide “full service”
facilities that also include hardware resources made available
for use by their customers. However, as the scale and scope of
typical data centers has increased, the tasks of provisioning,
administering, and managing the physical computing
resources have become increasingly complicated.

The advent of virtualization technologies for commodity
hardware has provided benefits with respect to managing
large-scale computing resources for many customers with
diverse needs, allowing various computing resources to be
efficiently and securely shared by multiple customers. For
example, virtualization technologies may allow a single
physical computing machine to be shared among multiple
users by providing each user with one or more virtual
machines hosted by the single physical computing machine,
with each such virtual machine being a software simulation
acting as a distinct logical computing system that provides
users with the illusion that they are the sole operators and
administrators of a given hardware computing resource,
while also providing application isolation and security among
the various virtual machines. Furthermore, some virtualiza-
tion technologies are capable of providing virtual resources
that span two or more physical resources, such as a single
virtual machine with multiple virtual processors that spans
multiple distinct physical computing systems.

As another example, virtualization technologies may allow
data storage hardware maintained at a remote, network-ac-
cessible storage service to be shared among multiple users.
Each user or client may be provided with a virtualized data
store which may be distributed across multiple data storage
devices, with each such virtualized data store acting as a
distinct logical data store that provides clients with the illu-
sion that they are the sole operators and administrators of the
data storage resources. Using such storage virtualization
techniques, it may be possible for some clients to reduce the
capital and management expenses associated with maintain-
ing large amounts of data storage on client premises. Storing
or replicating client data at remote storage services may also
provide other benefits such as simplified backup and/or easier
disaster recovery.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 illustrates an example system environment, accord-
ing to at least some embodiments.

FIG. 2 illustrates example subcomponents or processes of
a storage gateway appliance, according to at least some
embodiments.

25

30

40

45

50

60

2

FIG. 3 illustrates an example of a layout of caching meta-
data on a given cache disk of a storage gateway appliance,
according to at least some embodiments.

FIG. 4 illustrates an example of relationships between in-
memory and on-disk caching metadata, according to at least
some embodiments.

FIG. 5 illustrates examples of metadata elements for a data
chunk ofa cached volume, according to at least some embodi-
ments.

FIG. 6 is a flow diagram illustrating aspects of the opera-
tion of a storage gateway appliance related to cache metadata
management, according to at least some embodiments.

FIG. 7 is a flow diagram illustrating aspects of the opera-
tion of a storage gateway appliance related to handling a
client write request, according to at least some embodiments.

FIG. 8 is a flow diagram illustrating aspects of the opera-
tion of a storage gateway appliance related to data block
initialization, according to at least some embodiments.

FIG. 9 is a flow diagram illustrating aspects of the opera-
tion of a storage gateway appliance related to handling a
client read request, according to at least some embodiments.

FIG. 10 illustrates example state transitions of a data chunk
of'a volume cached at a storage gateway appliance, according
to at least some embodiments.

FIG. 11 is a flow diagram illustrating example cache evic-
tion operations at a storage gateway appliance according to at
least some embodiments.

FIG. 12 is a flow diagram illustrating aspects of the opera-
tion of a storage gateway appliance after a restart following an
unexpected shutdown, according to at least some embodi-
ments.

FIG. 13 is a flow diagram illustrating aspects of optimiza-
tion operations that may be performed in an environment in
which data is transmitted between a storage gateway appli-
ance and an intermediate server over a low performance net-
work link such as a WAN, according to at least some embodi-
ments.

FIG. 14 is a block diagram illustrating an example com-
puting device that may be used in some embodiments.

While embodiments are described herein by way of
example for several embodiments and illustrative drawings,
those skilled in the art will recognize that embodiments are
not limited to the embodiments or drawings described. It
should be understood, that the drawings and detailed descrip-
tion thereto are not intended to limit embodiments to the
particular form disclosed, but on the contrary, the intention is
to cover all modifications, equivalents and alternatives falling
within the spirit and scope as defined by the appended claims.
The headings used herein are for organizational purposes
only and are not meant to be used to limit the scope of the
description or the claims. As used throughout this application,
the word “may” is used in a permissive sense (i.e., meaning
having the potential to), rather than the mandatory sense (i.e.,
meaning must). Similarly, the words “include,” “including,”
and “includes” mean including, but not limited to.

DETAILED DESCRIPTION

Various embodiments of methods and apparatus for imple-
menting cached volumes at storage gateway appliances are
described. The term “volume” may be used herein to refer to
an identifiable unit of data storage. A volume may, for
example, be mounted at a computer server, using an operating
system interface, to enable users of the computer server to
access the data stored in the volume as though the data were
present on the local storage devices of the server. A “cached
volume” may be used herein to refer to a volume for which a

US 9,268,651 Bl

3

client of a network-accessible storage service has designated
space as a cache at one or more client-side storage devices,
while a primary instance or version of the volume is main-
tained at the network-accessible storage service. The cache
space, which may be distributed among a plurality of storage
devices such as individual disks, disk arrays, flash memory
devices, or the like, may be managed by a storage gateway
appliance in some embodiments. A storage gateway appli-
ance may be implemented as a virtual or physical appliance
that is installed on-premise at a customer’s data center and
that acts as a gateway for storage-related traffic between the
customer’s data center and the network-accessible storage
service—e.g., as an entity that initiates network traffic to the
storage service, and receives network traffic from the storage
service, on behalf of the client, as needed. In the following
description, the terms “storage gateway”, “storage gateway
appliance” and “storage appliance” may be used synony-
mously, and actions described as being performed by a stor-
age gateway appliance may refer to actions performed by a
subcomponent of the appliance, or by a process executing at
the appliance.

Atleast for some types of applications, a very large amount
of data may be generated over time in a volume being used for
the application, and only a subset of the data may represent a
“working set” that is accessed relatively frequently. By cach-
ing a subset of the volume’s data locally on client premises,
the storage gateway appliance may provide faster access to
the working set than if all the accesses to the volume required
communication with the remote storage service. In at least
some embodiments, the specific set of storage devices (such
as commodity disks) to be used for caching may be specified
by a client during cache setup or initial configuration,
enabling client control over storage hardware costs. Clients
may send cache configuration requests for initial cache setup,
or for subsequent cache expansion or contraction, with the
requests specifying the storage devices to be commissioned
for the cache (or decommissioned from the cache). The stor-
age gateway appliance may respond to such cache configu-
ration requests by performing the necessary configuration
steps to include the specified devices in a cache storage pool
(or exclude the specified devices from the cache storage
pool). Such caching may be particularly effective at enhanc-
ing overall input/output performance in embodiments where
traffic between the client premises and the remote storage
service has to flow over links of a shared Wide Area Network
(WAN), such as various links of the public Internet, which
may have lower network bandwidth, higher latencies, and/or
greater unpredictability with respect to performance than
high-speed private or dedicated networks. It is noted that
although much of the following description refers to disks as
the storage devices being used for caching data and for other
related operations (such as storing upload buffer entries as
described below), other types of storage devices may be used
in various embodiments.

In at least some embodiments, the storage gateway appli-
ance may support other services in addition to core caching
functionality. For example, the appliance may support snap-
shot functionality in some embodiments, enabling clients to
store point-in-time versions of portions or all of a volume’s
data at the remote storage service. Such snapshot functional-
ity may be supported using upload buffers employing disk
storage specifically designated for snapshots (as opposed to
caching) in some embodiments, as described below in further
detail. Such upload buffers may also be referred to as “write
logs” or “snapshot storage” herein. In some embodiments, a
storage gateway appliance may also serve as a storage proto-
col translator—e.g., a client may wish to use a storage proto-

10

15

20

25

30

35

40

45

50

55

60

65

4

col S1 that differs from the storage protocol natively S2
supported by the storage service, and the storage gateway
may act as an intermediary, translating between S1 and S2 as
needed. In some implementations, a client may provide an
arbitrary collection of disks, potentially obtained from a vari-
ety of different disk vendors, for use by the storage gateway as
cache disks and/or upload buffers; in other implementations,
a storage gateway appliance may be pre-equipped with cer-
tain types of disks, and/or restrictions may apply on the types
of disks that the appliance can support.

The size units in which data is organized at the remote
storage service, and transmitted over network connections
to/from the remote storage service, e.g., for caching, may
differ from the sizes of typical /O operations requested by
client applications in at least some scenarios. For example, in
one embodiment, a given volume, which may potentially
comprise terabytes or petabytes of data, may be organized as
a plurality of “data chunks”, with the size of each data chunk
set to a maximum of a small number of megabytes (such as
four megabytes). Each data chunk may further be subdivided,
e.g., forthe purposes of efficient cache metadata management
as described below in further detail, into smaller units called
data blocks (such as 64-kilobyte data blocks). Cache disk
space may be allocated in units of data chunks in some
embodiments. Of course, a given client read or write request
may be targeted to any desired amount of data, which may
map to a subset of a given data block, to an entire data block,
to multiple data blocks of a given data chunk, or to data blocks
of more than one chunk. The sizes of data chunks and/or data
blocks may be tunable in some embodiments, either globally
(e.g., a consistent chunk size and block size may be used for
all the cached volumes managed by a storage gateway) or for
individual volumes. A number of different tradeoffs may be
taken into account when determining chunk sizes and block
sizes in different embodiments, such as the amount of meta-
data required for cache management for a given (chunk size,
block size) combination, the number of I/O operations needed
for different types of client I/O requests, the distribution of
client I/O request sizes, the network overhead of transmitting
chunks versus blocks, the processing overhead for such tasks
as checksum operations, compression and the like. In at least
some embodiments, the storage gateway may be designed
and implemented with a specific set of performance and other
requirements or goals in view, including responsiveness and
throughput requirements, requirements to minimize the over-
head of metadata-related 1/O operations, requirements not to
lose client updates that have been acknowledged (even in the
event of a failure), and so on, any combination of which may
play a role in the determination of the chunk and block sizes.

A storage gateway appliance may, in at least some embodi-
ments, store logically equivalent caching metadata in mul-
tiple storage device locations, e.g., to help speed up appliance
restarts and to meet various performance and availability
goals. The metadata, which may be used, for example, for
identifying the offsets and/or states of various chunks and
blocks of a cached volume on a cache disk, may comprise a
number of different elements in different embodiments, as
described below in further detail with respect to FIG. 5.
According to one embodiment, a first storage space on a given
cache disk or other cache storage device may be designated to
(a) cache at least a portion of one or more data chunks of a
volume and (b) store inline metadata for the data blocks of the
one or more data chunks. The inline metadata may be stored
in metadata sections that are interspersed among, or that
alternate with, data blocks of the data chunk in the first storage
space in some embodiments—e.g., in one implementation, a
given data block may be located between two inline metadata

US 9,268,651 Bl

5

sections, and a given inline metadata section may be located
between two data blocks. A second storage space on that
given cache storage device may be designated for storing
contiguous metadata for the one more data chunks. At least a
portion of the contiguous metadata for a given data chunk
may be based on a portion of the inline metadata for the data
blocks of the data chunk—e.g., some or all of the contiguous
metadata may be logically derived from (or be a replica of)
portions of the inline metadata. In response to at least some
types of cache misses resulting from a client [/O request
directed at a particular block of the chunk (e.g., an initial
cache miss associated with the particular block), one or more
inline metadata sections may be modified. The modifications
may, for example in the case of a client read request, indicate
that the particular block has been retrieved from the remote
storage service and stored in the cache, or in the case of a write
request, indicate that the block contains data modified or
written by the client. The inline metadata may, in some imple-
mentations, be modified prior to providing a response to the
client’s 1/0O request. The contiguous metadata corresponding
to the data chunk or block may not be modified immediately;
instead, it may be modified asynchronously with respect to
the modification of the inline metadata. Thus, the contiguous
metadata may lag behind the inline metadata in terms of how
current the metadata elements or contents are, at least at some
points in time. The contiguous metadata may eventually be
brought up to date in any of a number of ways in different
embodiments—e.g., by periodically synchronizing it with
inline metadata during normal operation, by synchronizing it
with the inline metadata during controlled shutdown of the
appliance or cache storage device, during cache eviction
operations as described below in further detail, or during
recovery after an unexpected shutdown or failure, as also
described below in further detail.

In order to perform such caching-related operations as
determining whether a data block for which a client read
request is received is present in the cache or not, one or more
processes of the storage gateway appliance may need to
examine the cache metadata for the volume, preferably from
anin-memory version of the metadata. Because of the manner
in which inline metadata corresponding to the chunks of a
given cached volume may be distributed across a given cache
storage device in some embodiments, a substantial amount of
time may be required to read all the inline metadata for a given
set of chunks into memory (e.g., due to disk seeks required to
access each of the inline metadata sections). In contrast, it
may be much faster to read the chunk metadata from the
contiguous metadata section of the disk, which may be
accomplished using large sequential reads that may often be
more efficient than random reads. Thus, rapid retrieval of the
metadata from the contiguous metadata section into the appli-
ance’s memory may be enabled. For example, after a con-
trolled shutdown (during which the contiguous metadata is
made current using the inline metadata) and a corresponding
restart, the appliance may only have to read the contiguous
metadata into memory before enabling client access to the
cached volume. In at least some embodiments, the sizes of the
inline metadata sections and the contiguous metadata section
may be selected in such a way that all the metadata for all the
cached data chunks of a given volume can fit in the storage
gateway appliance memory. As a result of such an arrange-
ment, the majority of metadata manipulations performed dur-
ing normal operations may be in-memory operations instead
of'on-disk operations, and the disk I/O operation overhead for
cache management operations (e.g., metadata reads and
writes) may be kept low.

25

35

40

45

55

6

According to one embodiment, when a client submits a
write request (e.g., either a write to a new data block of a data
chunk, or a modification of an existing data block), the stor-
age gateway appliance may modify a corresponding portion
of'the disk cache and associated inline metadata, and also add
an entry to an upload buffer. The upload buffer, which may be
maintained in a separate disk storage space than the cached
chunks and their associated cache metadata, may be used for
asynchronous uploads of the modified data to the remote
storage service in such an embodiment. In such an embodi-
ment, the upload buffer may serve as a temporary holding
area or a staging area for updates to the volume, and before the
data block(s) containing a given set of modifications is
evicted or removed from the appliance’s cache disks, the
appliance may have to verify that the corresponding upload
buffer entry or entries have been uploaded to the remote
storage service. The relative timing of the addition of the
upload buffer entry, with respect to the timing of the modifi-
cations to the cache disk block, and/or the response to the
client that requested the write, may vary in different embodi-
ments. In one embodiment, for example, an upload buffer
entry may be written first, then the cache disk inline metadata
and data block may be modified, and then the response may
be sent to the client; while in another embodiment, a response
may be sent to the client as soon as the inline metadata and
data have been written, with the upload buffer entry being
written asynchronously. The upload buffer may be imple-
mented as an append-only data structure in some embodi-
ments. In various embodiments, point-in-time snapshots of a
volume (or sub-portions of the volume) may be generated,
e.g., at client request, using the upload buffer, and stored at the
remote storage service. In such embodiments, the upload
buffer may be referred to as “snapshot storage”. It is noted
that at least in some embodiments, client-initiated data modi-
fications may be transmitted to the storage service from the
gateway without using upload buffers.

In some embodiments, the storage gateway appliance may
have to merge data from the remote storage service with data
modifications generated by a client. For example, consider
the following sequence of I/O operations directed to a par-
ticular 64 KB (kilobyte) block that is initially not present in
the appliance’s cache. First, a write request directed to 4 KB
of data at offset 16 KB within the block is received. In
response to the write request, the storage gateway appliance
may store the modified data (and corresponding inline meta-
data) in cache storage allocated for the data chunk to which
the block belongs, without downloading any data from
remote storage. In some embodiments, as described below in
further detail, the appliance may fill other parts of the block
(e.g., portions or all of the 60 KB that are not modified by the
client) in the cache disk with a special “invalid data” pattern
or token, because the corresponding valid data has not been
retrieved from the remote storage service. After the write
request, a read request for 4 KB at offset 32 KB within the
block is received. In response to the read request, the appli-
ance may initiate a download of the 64 KB block. The appli-
ance may then determine that a merge of the downloaded data
block contents with the modified 4 KB section (which is now
present in the cache) is required, and merge the modified
block with the remainder of the downloaded block. Thus, the
portion of the cache disk allocated for the block may contain
the results of the merge operation: the 4 KB written by the
client, and 60 KB read from the remote storage service. In
embodiments where “invalid data” patterns are used, they
may be overwritten when the valid data is written to the disk
cache. The 4 KB of read data requested by the client may be
extracted from the downloaded block in memory (or from the

US 9,268,651 Bl

7

merged block on disk) and provided to the client. Details of
the operations that may be performed in response to client-
requested reads and writes in various embodiments are pro-
vided below, in conjunction with the descriptions of FIG. 7,
FIG. 8 and FIG. 9.

The storage gateway appliance may be configured to
implement a proactive cache eviction technique in at least
some embodiments. Unlike some types of cache implemen-
tations, in which cached data is not removed/replaced from
the cache until the cache gets full, a process of the storage
gateway appliance may attempt to ensure that sufficient free
cache disk space is maintained as part of normal operation, so
that long delays are not encountered (or are very rarely
encountered) due to the cache becoming full. Recall that at
least in some embodiments, cached data blocks that contain
modified data may not be replaced in the cache until the
corresponding upload buffer entries have been uploaded to
the remote storage service. As a result, depending on various
factors such as the relative numbers of client reads and writes,
the speed with which upload buffer entries are uploaded,
network congestion, appliance processor load, and so on, it
may not be advisable to wait to evict cached data chunks until
a very large fraction of the cache is in a dirty state (i.e., such
that the corresponding data modifications have not been
uploaded to the remote storage service). The gateway process
or subcomponent responsible for proactive eviction may be
termed the “cache evictor”, the “cache evictor process”, or
simply the “evictor” herein. In some embodiments, the evic-
tor may be instantiated or executed as a background or low-
priority process or activity, so as not to interfere with process-
ing and [/O associated with the incoming stream of client-
initiated I/O requests.

The evictor may be responsible for monitoring the number
of free or unused data chunks in the cache disks in some
embodiments (or the ratio of unused data chunks to the total
cache disk space). When the number (or ratio) falls below a
threshold, the evictor may start a proactive eviction iteration.
As part of the iteration, the evictor may identify, using one or
more criteria such as how recently the chunks were used, an
eviction set that includes N data chunks of the cache that are
to be freed. In some embodiments, the evictor may consider
only clean data chunks (i.e., chunks that do not have any
to-be-uploaded upload buffer entries outstanding) for inclu-
sion in the eviction set. In at least some embodiments (e.g.,
where upload bufters are not used), chunk metadata elements
such as state indicators may be used to determine whether a
chunk is clean, and therefore suitable for eviction, or not. In
other embodiments, the evictor may initiate or request
uploads from the upload buffer to the storage service for dirty
chunks identified as candidates for eviction, thus changing
the state of the dirty chunks to clean, and then include them in
the eviction set. For each of the N data chunks of the eviction
set, the evictor may generate one or more metadata entries in
memory, including, for example, a state indicator (such as an
“Unknown” state indicator), and an instance identifier that
may be used for data validity checking under certain condi-
tions as described below in further detail. After the metadata
for all N chunks has been determined, the evictor may write
the metadata from memory to the contiguous metadata sec-
tion of the cache disk (or disks) on which the eviction set
chunks were located, e.g., using one or more efficient bulk
write operations instead of potentially less-efficient separate
writes for each chunk’s metadata. The state indicator may be
used to find candidate chunks when new chunks have to be
allocated in response to client /O requests. The proactive
eviction technique described above may help to substantially
reduce the number of physical I/Os that are needed when an

35

40

45

8

incoming client request requires a new cache chunk, and the
bulk writes may help reduce the overhead associated with
cache eviction. A number of different criteria may be used in
different embodiments when selecting a candidate chunk for
inclusion in the eviction set—e.g., the recency of chunk use
(how recently the chunk was last accessed) and/or frequency
of chunk use (e.g., how often a chunk has been accessed) may
be considered. In one embodiment, the relative or absolute
location of a chunk within the cache storage device may also
be a criterion for eviction—e.g., if two or more data chunks
that are adjacent to one another on disk can be evicted
together, this may facilitate larger and more efficient sequen-
tial writes than if two chunks that are not adjacent are evicted
together, so a given chunk may be selected for eviction based
on its location with respect to other eviction candidates.

According to some embodiments, the storage gateway
appliance may be configured to implement rapid recovery
after an unplanned shutdown or crash. As described above,
the contents of the contiguous metadata sections of cache
disks may lag slightly behind the inline metadata sections, so
that at a given point in time, some fraction of the metadata in
the contiguous section may be slightly out of date. However,
in general, and depending on the synchronization techniques
being used to refresh the contiguous metadata, the majority of
the metadata in the contiguous section may typically be valid,
with only a small portion lagging. When an unexpected shut-
down occurs, and the storage gateway is restarted, it may rely
on the validity of the majority of the contiguous to quickly
allow client I/Os to resume, and also rely on eventually updat-
ing the out-of-date metadata in memory using inline metadata
sections on an as-needed basis. For example, in one embodi-
ment, upon restart, the contiguous metadata section (or sec-
tions) for a given cached volume may be read into memory.
For each chunk that was present in the cache as indicated by
the metadata read from the contiguous metadata section, a
caching state metadata entry may be examined. A given
chunk may be in any one of a number of different states, such
as “Clean”, “Dirty”, or “Unknown” (chunk states and state
transitions are described in further detail below with respect
to FIG. 10). In some implementations, all the chunks may be
placed in a “Needs-validation” state upon restart after a crash,
indicating that when an 1/O request is first directed to the
chunk, the in-memory metadata for that chunk is to be vali-
dated using the on-disk inline metadata sections for that
chunk. In other implementations, only a subset of the chunks
may be placed in “Needs-validation” state (such as the subset
that is not in “Unknown” state), while inline metadata may be
read synchronously for another subset of the chunks (such as
the subset that is in “Unknown” state) before allowing client
1/Os to resume for that other subset.

By reading the contiguous metadata quickly (e.g., using
large sequential reads) in some embodiments, and allowing
client I/Os to resume despite the fact that some of the con-
tiguous metadata may not be current, the duration of the
disruption caused to client applications by the crash may be
reduced substantially. Since much of the contiguous metadata
is typically valid even after a crash, and since only the first [/O
directed at a given chunk in “Needs-validation” state results
in the reading of the inline metadata for the chunk in such
embodiments, the performance costs of bringing the storage
gateway appliance back into an active or running state after
the crash may be kept low. In some embodiments, at least a
portion of the upload buffer may be invalidated as a result of
a crash, so that outstanding snapshots or uploads may have to
bere-done. In such an embodiment, a “bootstrapping” opera-
tion may be initiated after a crash, during which contents of at
least some subset of valid data blocks present in the cache are

US 9,268,651 Bl

9

uploaded to the remote storage service. In some embodi-
ments, bootstrapping may have to be completed before the
storage gateway appliance is brought into active mode for
new client I/O requests, while in other embodiments the boot-
strapping may be done in parallel to new client I/O requests
and/or run as a background or low-priority task.

As noted above, in at least some embodiments, connectiv-
ity between the storage gateway appliance and the remote
storage service may be implemented using relatively low-
performance network links, such as WAN links. In some such
embodiments, intermediate devices or servers that are con-
nected to the storage gateway appliance via the low-perfor-
mance network links, but are connected to the storage service
using high-performance network links, may be used to opti-
mize some of the upload and download operations required
for supporting cached volumes at the appliance. Such inter-
mediate servers may be referred to as “data plane” servers or
devices in some embodiments (since they may be used pri-
marily for transferring client data, as opposed to, for example,
“control plane” servers or devices that may be used primarily
for configuration or administration purposes). Data plane
servers may be located within the same provider network in
which the storage service is implemented in at least some
embodiments, and may thus be able to take advantage of
high-speed dedicated internal network links for communica-
tions with the storage service.

According to at least some embodiments in which an inter-
mediate server is used, in response to a detection of a read
cache miss caused by a client-initiated read operation
received at a storage gateway appliance, a first data transfer
may be initiated from the remote storage service to the inter-
mediate server over a first network path with a first bandwidth
capacity (such as a path using high-speed links of the storage
service provider’s internal network). The first data transfer
may result in the transmission of a data chunk (or a portion of
a data chunk) that includes the data block (or blocks) to which
the read operation was directed to the intermediate server. The
intermediate server may determine, based on one or more
criteria (such as results of an analysis of the pattern of 1/O
requests received at the storage gateway appliance, or metrics
regarding resource utilization or network congestion), the
number, contents, and/or relative priority of data transfers that
are to be implemented from the intermediate server to the
storage gateway appliance. These transfers from the interme-
diate server to the appliance, which may be resident at client
premises, may occur over a different network path with a
different bandwidth capacity (such as a WAN path, with a
relatively low bandwidth and/or high latency). At least one
such data transfer, comprising contents of a data block needed
to respond to the read operation, may then be initiated from
the intermediate server to the appliance. The data requested
by the client may be provided from the storage gateway
appliance.

The intermediate server may determine that additional data
blocks of the chunk downloaded from the storage service
should be transmitted to the storage gateway appliance, e.g.,
in anticipation of future read requests. In some embodiments,
these pre-fetched data blocks may be transmitted at low pri-
ority to the storage gateway appliance, relative to the priority
at which the data block that was originally requested by the
client is transmitted. In one embodiment, the intermediate
server may receive the data chunk in compressed format,
uncompress the chunk, and extract the originally-requested
data block before transmitting it on to the storage gateway.
The extracted data block may be compressed before the trans-
mission to the storage gateway appliance in some embodi-
ments. The storage gateway appliance may merge modified

25

30

40

45

55

10

contents of some of the data blocks that have been written to
the disk cache, with contents sent by the intermediate server
in some scenarios.

In some embodiments, the intermediate server may be
configured to participate in the upload of client-modified data
from the storage gateway appliance to the storage service. For
example, when a data block of a particular chunk is updated
at the storage gateway appliance cache, the modified contents
of'the block may eventually be transmitted to the intermediate
server for further transmission to the storage service. The
intermediate server may be configured to download the cor-
responding data chunk from the storage service in some
embodiments, and merge the newly-updated data block with
the remainder of the chunk, before transmitting the chunk
back to the storage service. In at least some embodiments, the
intermediate server may be responsible for validating the data
received from the storage gateway appliance, the data
received from the storage service, and/or the merged data,
e.g., to reduce the likelihood that data is corrupted either
inadvertently or maliciously. Details regarding various
aspects of the functionality of the storage gateway and the
intermediate servers are provided below.

Example System Environment

FIG. 1 illustrates an example system environment, accord-
ing to at least some embodiments. The system comprises a
provider network 105 in which a storage service 120 is imple-
mented, as well as a collection of storage gateway appliances
180 and intermediate servers 130. The storage service 120
may be responsible for storing client storage objects (such as
volumes, file systems, and the like) in storage devices 122,
and providing access to the storage objects to clients 148
(e.g., clients 148A, 148B, 148K and 148L.) via network con-
nections. Each client 148 may have access to a collection of
computing devices of a corresponding client network 165—
e.g., clients 148A and 148B have access to client network
165A, and clients 148K and 148L have access to client net-
work 165B in the depicted embodiment. Each client network
165, whose devices may be located in a corresponding client
data center or set of data centers, may include one or more
storage gateway appliances 180, such as storage gateway
appliance 180A in client network 165A, and storage gateway
appliance 180B in client network 165B. In the depicted
embodiment, each storage gateway appliance 180 may be
configured to cache subsets or all of the contents of client
storage objects (whose primary copies are stored in storage
devices 122 of the storage service 120) using respective appli-
ance storage 182, e.g., appliance storage 182A of storage
gateway appliance 180A and appliance storage 182B of stor-
age gateway appliance 180B. Appliance storage 182 may
include, for example, a plurality of disks and/or other storage
devices, some of which may be used for caching data chunks
and data blocks of client storage objects such as volumes,
while other may be used for upload buffers (snapshot storage)
or other purposes.

A storage gateway appliance 180 may be configured to
download data from, and upload data to, the storage service
120 over a combination of network links in various embodi-
ments. In the depicted embodiment, network links 117 (e.g.,
link 117A, 117B, 117C, 117D and 117E) may be used for
communications between the storage gateway appliances 180
and a set of intermediate servers or devices 130 of the pro-
vider network. Links 117 may be part of an external network
144, which may include at least some relatively low-perfor-
mance links such as WAN links. Within the provider network
105, intermediate servers or devices 130 may be able to utilize
an internal network 140 to communicate with storage service
120, e.g., over high-performance dedicated network links 116

US 9,268,651 Bl

11

(e.g., links 116A, 116B, 116C or 116D). Similarly, high-
speed links 116E may be used to store data to, or retrieve data
from, the storage devices 122 of the storage service 120 in
some implementations. A different set of links 118 (which
may also support higher performance than the external net-
work 144) may be used within the client networks 165, such
as links 118A, 118B, 118C, 118K, 118L, and 118M.

In some embodiments, a client 148 may create a storage
object, such as a cacheable storage volume, using one or more
administrative interfaces (such as service consoles imple-
mented via web sites or web pages) not shown explicitly in
FIG. 1. For a given cacheable volume, a client 148 may
indicate the size of the disk cache to be set up at the appliance
storage 182 of its storage gateway appliance 180. For
example, a volume of size 10000 Gigabytes (GB) may be
created at storage service 120 by a client 148A (such as an
administrator of a client network 165), and a disk cache with
a maximum size of 1000 GB may be established at appliance
storage 182A. In some embodiments, where a hierarchical
organization of volumes into chunks and chunks into blocks
is used, clients may be able to specify or select cache chunk
sizes and/or data block sizes, while in other embodiments the
storage service 120 and/or the storage gateway appliances
180 may be responsible for deciding chunk and block sizes. In
at least some embodiments, the space within a storage gate-
way appliance’s disk cache may be allocated in units of
chunks, and data may be transferred, at least between the
storage service 120 and the intermediate servers 130, in
chunks. Each storage gateway appliance 180 may be config-
ured to cache chunks of one or more cacheable volumes or
other storage objects in some embodiments. The number of
volumes whose data is cached by a given storage gateway
appliance 180 may depend, for example, on the total sizes of
the caches that the clients 148 wish to set up, and on the total
amount of disk space available in corresponding appliance
storage 182. In at least some scenarios, multiple storage gate-
way appliances 180 with respective appliance storages 182
may be established within a given client network 165. The
multiple storage gateway appliances may be configured for
redundancy, load balancing or fault-tolerance in some
embodiments, and/or simply to cache larger volumes in other
embodiments (e.g., the cache disk space requested for a single
volume may be too large to fit on the disks allocated to a single
storage gateway appliance 180, so more than one appliance
may be used to cache the contents of that single volume).

A storage gateway appliance 180 may maintain caching
metadata for one or more cacheable volumes (or portions of
volumes) for which the gateway appliance is responsible. The
metadata may be maintained in two types of on-disk locations
of'the appliance storage 182, as well as in a volatile memory
of the storage gateway appliance 180 in some embodiments.
In some embodiments, a portion of each cache disk’s address
space (e.g., near the starting address of the disk) may be set
aside for contiguous caching metadata, while a different por-
tion of the cache disk address space may be set aside for the
volume’s data blocks and inline metadata sections. The con-
tents of the inline metadata sections may represent the most
current on-disk metadata (except under certain exceptional or
error operating conditions), and may under most operating
conditions be replicated within the volatile memory of the
storage gateway 180 in some embodiments. Thus, to look up
whether a particular data block and/or its containing data
chunk is present in the disk cache, the in-memory metadata
may typically be consulted. When a new data block is down-
loaded from storage service 120 (e.g., in response to a read
miss), an inline metadata section or sections for that data
block may be updated, and the contents of the block stored on

10

15

20

25

30

35

40

45

50

55

60

65

12

the cache disk, without necessarily updating contents of the
contiguous metadata section of the disk. The contiguous
metadata may be updated asynchronously in at least some
embodiments, e.g., by copying at least a portion of the inline
metadata during periodic synchronizations, during controlled
shutdowns, or during eviction-related processing. After a
controlled shutdown, when the storage gateway appliance
180 is brought back online, the contents of the contiguous
metadata section may be quickly read into memory, and client
1/0O operations may be resumed as soon as all the metadata is
read in some embodiments.

The data of the cacheable volume may be transformed in a
number of different ways before storage to disk (e.g., at the
appliance storage 182 and/or at the storage service 120) and/
or before network transmission in some embodiments. In one
embodiment, for example, data chunks and/or blocks may be
compressed before transmission from storage service 120 to
intermediate servers 130, before transmission from interme-
diate servers 130 to a storage gateway appliance 180, and/or
before transmissions in the reverse direction between the
storage gateway appliance 180 and an intermediate server
130, or between an intermediate server 130 and the storage
service 120. In some embodiments, checksums may be com-
puted for data blocks and/or for entire data chunks, and the
checksum values may be transmitted as well, so that the
validity of the data may be checked at either the storage
gateway appliances 180, the intermediate servers 130, and/or
the storage service 120. In at least one embodiment, addi-
tional operations may be performed on the data, e.g., using
special transformation keys stored in the chunk or block
metadata, before writing contents of a disk block to a cache
disk, to enhance data security and reduce the chances of
unauthorized data access. The intermediate servers 130 may
be configured to initiate various types of pre-fetch operations,
e.g., low-priority data transfers of data blocks that were not
explicitly requested by clients, in some embodiments, as
described below. In different embodiments, any of various
techniques may be used to identify a particular intermediate
server 130 to be used for a particular data transfer. For
example, in some embodiments, a set of one or more inter-
mediate servers 130 may be assigned for data transfers
between a given storage gateway appliance 180 and the stor-
age service 120, for all the cached volumes managed using
that appliance. In other embodiments, a different intermedi-
ate server 130 may be selected for each data transfer, e.g.,
based on current workload levels at the intermediate servers
and/or based on network conditions. It is noted that at least in
some embodiments, storage gateway appliances 180 may
communicate with the storage service 120 directly, without
using intermediate servers 130.

Details regarding proactive or preemptive cache eviction
techniques that may be implemented at a storage gateway
appliance 180 to reduce the likelihood of long delays during
normal read/write operations are provided below. In addi-
tional, techniques to speed up storage gateway appliance
recovery times after crashes, taking advantage of the ability to
quickly read contiguous metadata sections of appliance stor-
age devices (e.g., using large sequential reads or read-ahead),
are also described below in further detail.

Example Components of Storage Gateway Appliances

FIG. 2 illustrates example subcomponents or processes of
a storage gateway appliance 180, according to at least some
embodiments. As shown, the storage gateway appliance 180
may include a cache disk pool manager 202, an upload buffer
manager 212, an interface manager 232, an evictor 230 and a
storage service accessor 222. Each component 202, 212, 232,
230 and 222 may be implemented using any desired combi-

US 9,268,651 Bl

13

nation of hardware and/or software elements in various
embodiments. Storage service accessor 222 may be respon-
sible for data transfers and/or administrative communications
with storage service 120, e.g., either directly or via interme-
diate servers 130. Cache disk pool manager 202 may be
responsible for managing cache storage 270 of the appliance
storage 182, which may include a plurality of cache disks 250
(e.g., disks 250A, 250B, 250C and 250D). For example,
cache disk pool manager 202 may identify the sections of disk
space that are to be used for contiguous metadata, disk blocks
and inline metadata, updating on-disk data blocks and meta-
data as needed, and handling disk reads and writes for client
1/0O requests. In some embodiments, storage devices other
than traditional disk drives may be used for the cache, e.g.,
flash memory drives or other devices may be used to store the
cache metadata and/or the data blocks of various chunks in
some environments.

Upload buffer manager 212, which may also be referred to
as a snapshot manager, may be responsible for logging-re-
lated operations and/or snapshot operations at upload buffer
storage 280. A plurality of upload buffer disks 260 may be
used in some embodiments, such as disks 260A-260D.
Upload buffer manager 212 may schedule uploads of entries
written to the upload buffer disks 260 (or to other types of
storage devices than disks, such as flash memory devices
usable for the upload buffer) as a result of client-initiated
write operations directed to cached data at disks 250. Upload
buffer manager 212 may also, for example, schedule the
upload of a point-in-time snapshot of a volume or a portion of
a volume to the storage service 120 via the storage service
accessor 222, or schedule retrieval of a point-in-time snapshot
from the storage service 120 at client request. When upload-
ing a snapshot, the upload buffer manager 212 may be respon-
sible for identifying the appropriate set of entries that corre-
spond to the specified point-in-time for the snapshot. In at
least some embodiments, disk space on the upload buffer
disks 260 may be organized as append-only logs. The upload
buffer may temporarily store data modifications correspond-
ing to dirty cached data blocks, before they are uploaded to
the storage service; after all the pending or buffered modifi-
cations of a particular data chunk have been uploaded, the
chunk state may be changed from “Dirty” to “Clean” in some
embodiments.

Evictor 230 may be responsible for ensuring that a pool of
free (i.e., currently unallocated) cache chunks is available to
be used for incoming read/write requests from clients, at least
under normal operating conditions. For example, evictor 230
may track the number of free chunks available in the cache
disk space allocated for a particular cached volume, and if that
number falls below a threshold, initiate an eviction cycle or
iteration. During the eviction cycle, a number of chunks may
be evicted from the cache proactively, thus avoiding potential
delays that might have resulted if the number of free chunks
was allowed to fall further and a burst of client I/O requests
occurred. Evictor 230 may write updated metadata to con-
tiguous metadata sections of various cache disks 250 during
eviction cycles, as described below. In some embodiments,
evictor 230 may be implemented as a subcomponent of cache
disk pool manager 202. In at least one embodiment, the opera-
tions of evictor 230 may be conducted at a lower priority than
some other operations of storage gateway appliance 180
(such as operations associated with incoming /O request
handling or with transfers from upload buffers to the storage
service), e.g., evictor 230 may be instantiated as a background
process or a background task.

Interface manager 232 may be responsible for implement-
ing programmatic interfaces (such as application program-

30

40

45

65

14

ming interfaces (APIs)) that may be used by clients 148 to
request operations such as [/Os, snapshot reads and writes. In
some embodiments, interface manager 232 may support a
plurality of storage protocols or interfaces, some of which
may differ from the native storage protocols or interfaces used
at storage service 120. For example, in at least some embodi-
ments, the storage service 120 may store the client’s data in
the remote storage devices 122 according to block storage
technology. In one embodiment, the storage service may store
client data as objects retrievable via client-assigned keys. The
interface manager 232 of the storage gateway 180 may expose
any of a variety of protocols in different embodiments, such
as block storage protocols (e.g., iISCSI, GNBD (Global Net-
work Block Device), etc.), file storage protocols (e.g., NFS
(Network File Storage), CIFS (Common Internet File Sys-
tem), etc.), and/or object storage protocols (e.g., REST (Rep-
resentational State Transfer)) to the client’s applications.

In atleast some embodiments, a storage gateway appliance
180 may include other components or processes not shown in
FIG. 2. For example, in some embodiments, multiple storage
gateway appliances may be configured as a logical group, and
a given storage gateway appliance 180 may include compo-
nents responsible for group membership management and/or
communications with peer storage gateway appliances. In
some embodiments, some of the components illustrated in
FIG. 2 may be omitted from a particular implementation of a
storage gateway appliance 180.

On-Disk Metadata Layout

FIG. 3 illustrates an example of a layout of caching meta-
data on a given cache disk 250 of a storage gateway appliance
180, according to at least some embodiments. The disk
addresses 302 (e.g., offsets from the start of the portion of the
disk available for application use) are shown increasing from
left to right in FIG. 3. As shown, a section 352 of the disk
space (close to the start of the address space in the depicted
embodiment) may be designated for contiguous metadata.
Another space 322 of the disk may be designated to hold the
data blocks of cached chunks, as well as inline metadata
sections. In at least some implementations, more than one
disk region may be used for contiguous metadata—e.g., con-
tiguous metadata may be divided between two or more
regions of the disk address space, or replicated across two or
more regions of the disk address space.

Within space 322, respective ranges of disk space may be
set aside for each cached chunk, such as chunk 366A and
366B. Within a given chunk, the data blocks 368 may be
arranged alternately with inline metadata sections 344. For
example, for chunk 366A, three data blocks are shown
—366A, 3668 and 366C. Each data block 368 is located
between two inline metadata sections 344—for example,
block 368A is located between inline metadata sections 344A
and 344B, block 368B is located between inline metadata
sections 344B and 344C, and so on. Similarly, data block
368K of data chunk 366B is located between inline metadata
sections 344P and 344Q). In at least some embodiments, meta-
data entries for a particular data block 368 may be stored in
both inline metadata sections that are adjacent to the particu-
lar data block. For example, for block 368C, metadata may be
stored in inline metadata section 344C and also in inline
metadata section 344D. The inline metadata section immedi-
ately preceding a given data block may be referred to as a
“header” or “head” inline metadata section for that block, and
the inline metadata section immediately succeeding the block
may be referred to as a “tail” inline metadata section. In some
implementations, different metadata elements for a given
data block 368 may be written to the head and tail inline
metadata sections, while in other implementations, identical

US 9,268,651 Bl

15

metadata may be stored in both the head and the tail sections.
In at least one implementation, when an I/O request is
received that results in a write to a given data block 368 (e.g.,
when a client submits a write request directed to a portion or
all of a data block 368), both the head and tail inline metadata
sections may be updated prior to updating the data block
contents, and a response to the client request may not be sent
until both inline metadata sections have been updated.

In at least some embodiments, when only a portion of a
particular data block 368 is written to, the remainder of the
data block may be initialized with an “invalid data” pattern.
For example, if each data block 368 is 64 KB in size, and a
client writes to the first 4 KB of a particular block, in such an
embodiment an invalid data pattern may be written in the
remaining 60 KB of the block. In response to a subsequent
read request directed at the same data block, the validity of the
data block in the cache may be checked by determining
whether the invalid data pattern is found in the block. If the
invalid data pattern is found, a download of the data block
from the storage service 120 may be initiated to respond to the
read request, and the downloaded data may be merged with
the 4 KB portion that was previously written.

The sizes of the contiguous metadata section 352 and/or
space 322 may be determined by the storage gateway appli-
ance 180 (e.g., by its cache disk pool manager 202) in some
embodiments, based for example on client cache configura-
tion requests, chunk size and/or data block size. In some
embodiments, gaps such as 390A and 390B may initially be
left between the contiguous metadata section and the chunks
366, or between successive chunks 366. The gaps may be
useful if; for example, the contiguous metadata section grows
beyond its initial size, or if metadata or data has to be moved
from one location to another on disk. In addition, gaps such as
390A or 390B may be left for alignment-based performance
reasons in at least some embodiments. For example, depend-
ing on the specific disk hardware being used in a given imple-
mentation, optimal disk 1/O performance may be obtained if
the data written to disk is aligned based on 4-kilobyte mul-
tiples for one disk type or vendor, while optimal disk I/O
performance may be obtained for a different disk type or
vendor if data is aligned based on 512-byte multiples, and
gaps may be left between the chunks and/or various metadata
sections to support the optimal level of performance. In other
embodiments, gaps 390 may not be used. In some embodi-
ments, the sizes of the data chunks 366, the data blocks 368,
and/or the inline metadata sections 344 may be the same for
different cached volumes (e.g., in one implementation, each
chunk may comprise 64 data blocks, each block 64 KB in
size, and each inline metadata section may be 4 KB in size;
thus, the total disk space needed for the data blocks and inline
metadata sections of the chunk may be (64x64 KB)+(65x4
KB), assuming that each chunk starts and ends with an inline
metadata section 344). When inline metadata for a given data
block 368 is to be updated or initialized, the offset or location
of'the inline metadata section may be determined based on the
relative offset of the data block 368 within the chunk—e.g., in
the example shown in FIG. 3, the offset of the third inline
metadata section 344C from the starting disk address of the
chunk may be computed as (2x((data block size)+(inline
metadata section size))), and in general the offset of the head
inline metadata section for the Nth data block may be com-
puted as ((N-1)x((data block size)+(inline metadata section
size))).

In other embodiments, the sizes of data chunks, data blocks
and/or inline metadata sections may vary from volume to
volume or from storage gateway appliance to storage gateway
appliance. In some embodiments, heuristics based on perfor-

30

40

45

16

mance metrics obtained from tools such as network monitors,
storage monitors or processing monitors may be used to
select or modify block sizes, chunk sizes, and/or inline meta-
data section sizes.

FIG. 4 illustrates an example of relationships between in-
memory and on-disk caching metadata, according to at least
some embodiments. At a given point in time during normal
operation, the disk-resident inline metadata 405 comprising
the logical combination of all the inline metadata sections 344
may represent the most recent on-disk metadata in the
depicted embodiment. The in-memory metadata 415 closely
tracks the inline metadata (e.g., because writes to the inline
metadata are written from the memory of the storage gateway
appliance, and inline metadata contents are read into the
memory from the inline metadata sections as and when
needed). In contrast, the contiguous metadata 425 stored in
section 352 of FIG. 3 may be updated asynchronously in the
depicted embodiment, e.g., during controlled shutdown, evic-
tions, or in accordance with a synchronization schedule. In
implementations where metadata layouts similar to that
shown in FIG. 3 are used, updating inline metadata section(s)
for a given data block may incur relatively low overhead when
the data block itself is being updated (in fact, at least in some
embodiments a single disk write may be sufficient to update
the inline metadata as well as the data block). In contrast, if
the contiguous metadata section were also to be updated
whenever a new data block were written to the cache, the /0O
overhead may be substantially higher. When metadata for
complete chunks has to be read, as for example during
restarts, it may be much more efficient to read the metadata
from the contiguous metadata section 352, as only a few large
sequential reads may suffice instead of the more numerous
reads that may be required to read all the inline metadata
sections. Thus, at least in some embodiments, the storage
gateway appliance 180 may be optimized for (a) relatively
infrequent bulk metadata reads from the contiguous metadata
sections on disk and (b) updates only to inline metadata
sections when data blocks are initially written to the cache. In
some embodiments, after a particular data block’s inline
metadata section(s) have been updated, additional client I/O
operations directed to the same block may not require any
on-disk metadata updates (unless the state of the chunk to
which the block belongs changes from “Dirty” to “Clean” or
vice-versa, as described below with reference to FIG. 10, or
until the next eviction iteration or shutdown occurs).
Metadata Contents

FIG. 5 illustrates example metadata elements correspond-
ing to a data chunk of a cached volume, according to at least
some embodiments. In one embodiment, for each data chunk
for which cache storage is currently allocated on a given
cache disk 250, a corresponding set of metadata elements as
shown in FIG. 5 may be stored in the contiguous metadata
section 352 of the disk 250. Metadata for one chunk may be
stored adjacent to the metadata for another chunk, so that it
may be possible to quickly read all the metadata for all the
chunks. In some embodiments, at least a subset of the meta-
data elements illustrated in F1G. 5 for a given chunk may also
be stored in inline metadata sections 344; that is, at least some
metadata elements may be replicated between the inline
metadata sections and the contiguous metadata section.
Metadata for a given chunk may thus be obtainable from two
on-disk sources: a logical combination of the inline metadata
sections for the data blocks of the chunk, and the contiguous
metadata section. As described above, the version of metadata
stored in the contiguous section 352 at a given time may be
slightly out of date with respect to the inline metadata.

US 9,268,651 Bl

17

As shown, the metadata entries 502 for a given chunk may
include a metadata version identifier 511. Software and/or
hardware upgrades at the storage gateway appliance 180,
intermediate servers 130 and/or the storage service 120 may
result in upgrades to the metadata design or implementation
over time in some embodiments, and for certain types of
operations it may be useful to validate the metadata version
using a version identifier 511. A cache disk identifier 516 may
indicate the particular cache disk 250 on which disk space for
the chunk has been allocated.

A cache entry instance identifier 521 (which may also be
referred to herein simply as an “instance identifier”) may be
used for validating contents of data blocks in some embodi-
ments. The cache entry instance identifier may be needed at
least in part because of the way that evictor 230 operates in
such embodiments. Cache entry instance identifiers may be
stored in the contiguous metadata for a chunk, and also rep-
licated in the inline metadata sections of the data blocks of the
chunk in some implementations. Evictor 230 may free the
disk space allocated for a given chunk without updating all
the inline metadata sections of the chunk in some embodi-
ments; instead, for example for performance reasons, the
evictor may only update the contiguous metadata for the
evicted set of chunks during a given eviction cycle or itera-
tion. After the chunk has been evicted, client-initiated reads
and writes may be resumed to the chunk, and the inline
metadata may be updated based on the reads and writes per-
formed. Ata given time after an eviction, some data blocks of
the chunk may contain fresh data written after the eviction,
while other data blocks may still retain data that was written
before the chunk was freed by the evictor 320. The data that
remains from the previous use of the chunk (i.e., contents of
data blocks that were written before the most recent eviction
of the chunk) may thus be invalid. In order to quickly distin-
guish between such invalid data blocks and the valid data
blocks written after the most recent eviction of the chunk,
especially in the event of a crash, a new cache entry instance
identifier 521 may be generated each time the chunk gets
evicted in some embodiments. After a crash, as described in
more detail below, the instance identifier stored in the inline
metadata section(s) for a given data block B of a recently-
evicted chunk (as determined by the “Unknown” state of the
parent chunk C to which block B apparently belongs) may be
compared to the instance identifier in the contiguous meta-
data section of chunk C. Ifthe two instance identifiers match,
the inline metadata and the data block B may be deemed valid.
If the two instance identifiers do not match, the data block B
may be deemed invalid, because the instance identifier mis-
match indicates that the block comprises data written to the
cache disk prior to the most recent eviction of the chunk. In
some implementations, valid data for block B may be down-
loaded from the storage service 120 when the instance iden-
tifiers do not match.

In some embodiments, for example to further decrease the
probability of inadvertently providing a stale or invalid data
block to a client 148 that may not be authorized to see the stale
data, a data transform key 526 may be used to encrypt the data
blocks on the cache disk. Each time a chunk is freed by evictor
230, a new data transform key 526 may be generated, which
may be subsequently used to encrypt/decrypt the data blocks
of the chunk. Thus, when providing data from a block B of
chunk C in response to a read request from a particular client
148, the latest data transform key may be used for decryption.
If some stale data from previous use of the data block (i.e.,
prior to the most recent eviction) remains resident and is
inadvertently made available to the client, the use of the new
data transform key may render the data unintelligible.

5

10

15

20

25

30

35

40

45

50

55

60

65

18

The metadata 502 may include a volume identifier 531 and
a volume offset 536, indicating the particular cached volume
to which the chunk belongs and the offset of the start of the
chunk within the volume. For example, a particular cached
volume comprising 4-megabyte chunks may have a volume
identifier VOL-ABCD, the first chunk of that volume may
have its volume offset 536 set to 0, the second chunk may have
its offset set to 4194304 (if offsets are expressed in bytes), and
so on. The chunk disk start address 541 may indicate the
offset within the cache disk’s address space at which space for
the chunk is allocated.

Depending on the implementation, a chunk may pass
through a number of different caching states, such as an
“Unknown” state immediately after eviction or allocation, a
“Dirty state” while modifications of the chunk have not been
uploaded to the remote storage service 120, and a “Clean”
state after all the pending modifications have been uploaded.
The current caching state of the chunk may be stored in state
indicator 546 in some embodiments. A block validity mask
551 may be used to indicate which data blocks of the chunk
have beeninitialized, and which remain uninitialized, in some
embodiments. A data block may be initialized the first time it
is written to in such embodiments, either due to a client-
initiated write, or due to the storage gateway writing data
downloaded from the remote storage service 120 in response
to a read miss. A bitmap may be used for block validity mark
551 in some implementations: for example, in an implemen-
tation where each chunk comprises 64 blocks, a 64-bit mask
may be used to represent the initialization state of 64 data
blocks, with a “1” in the n? position indicating that the n”
block has been initialized, and a “0” indicating that the n”
block has not yet been initialized.

In some embodiments, one or more timestamps 556 may
also be included in the chunk metadata, indicating for
example the last time the chunk was freed by evictor 230, or
the last time the chunk metadata was written to the contiguous
metadata section. In some implementations, an invalidity
indicator such as invalid data pattern 561 may be used as a
filler to indicate portions of a data block that do not contain
valid data—for example, if only 4 KB of a 64 KB block have
been written to, the remaining 60K may be filled with the
invalid data pattern 561. In some embodiments a cyclic
redundancy check (CRC) value 571 or a similar error detec-
tion code for the metadata may be computed each time any of
the fields is updated, and the error detection code may be
stored with the metadata. In different embodiments, some of
the metadata entries shown in FIG. 5 may be omitted, or
others may be added or substituted.

Methods for Managing Cache Metadata, Client-Initiated
Writes and Client-Initiated Reads

FIG. 6 is a flow diagram illustrating aspects of the opera-
tion of a storage gateway appliance related to cache metadata
management, according to at least some embodiments. As
shown in element 601 of FIG. 6, the maximum size of the
subset of a volume that is to be cached may be determined,
e.g., based on input provided by the client 148 that owns or
manages the volume. In addition, the data chunk size, data
block size, and the sizes of the inline metadata sections may
be determined. In some embodiments, the data chunk size,
data block size, and inline metadata sizes may be identical for
different volumes, while in other embodiments, any combi-
nation of these three parameters may differ for different vol-
umes. The disk space designated for storing inline metadata
sections and data blocks may be identified (element 604), and
the disk space to be used for contiguous metadata may be
determined (element 607).

US 9,268,651 Bl

19

After the space for the different types of metadata and the
data blocks has been designated, client I/Os may be enabled.
When a client requests a read operation or a write operation
that causes a cache miss (i.e., the targeted data block is not
found in the disk cache), the disk space to be used for the
targeted data block may be initialized, which may include
writing to the inline metadata section(s) corresponding to the
targeted data block (element 610). In the case of a write miss,
in the depicted embodiment, the inline metadata section or
sections for the disk block may first be updated to reflect the
write, a corresponding entry may be added to the upload
buffer, and the bytes modified may be written to the appro-
priate data block within the appropriate chunk (element 613)
of'the cache disk. In the case of aread miss, the requested data
block may be downloaded from the remote storage service
120, the inline metadata may be updated, and the downloaded
data may be written to the cache. In the depicted embodiment,
the targeted data block and the inline metadata section(s)
associated with the target data block may have to be written
to, before a response is sent to the client who submitted the
1/0O request. Modifications to the contiguous metadata may
not be required prior to responding to the client in the depicted
embodiment.

At some later point in time, asynchronously with respect to
the inline metadata update, the contiguous metadata section
of'the cache disk may be updated to reflect the contents of the
inline metadata (element 616). The manner in which the
contiguous metadata update is scheduled may vary in differ-
ent embodiments—e.g., in some embodiments, a background
process may periodically update the contiguous metadata,
while in other embodiments the contiguous metadata may be
updated during eviction cycles and/or during controlled shut-
downs. After a restart that follows a controlled shutdown, the
state of the data blocks of one or more chunks of the volume
may be determined quickly by reading the contiguous meta-
data (element 619) into memory, without reading all the inline
metadata for the chunks. Client access may then be enabled
for the blocks of the cached chunks (element 622).

FIG. 7 is a flow diagram illustrating aspects of the opera-
tion of a storage gateway appliance related to handling a
client write request, according to at least some embodiments.
A write request targeted to at least a portion of a block B of'a
chunk C of a cached volume may be received from a client
(element 701). In the depicted embodiment, an upload buffer
entry may be optionally added (element 704), containing the
modified data to be eventually uploaded to the remote storage
service 120. In those embodiments in which an upload buffer
entry is written, the entry may be written asynchronously with
respect to the other operations performed in response to the
write request in some implementations, while in other imple-
mentations the entry may have to be committed or completed
before a response to the write request is provided to the client.

Cache metadata (typically, the in-memory version of the
metadata) may be consulted to determine whether the chunk
C is present in the cache (element 707). If the chunk C is not
present in the cache, a determination may be made as to
whether sufficient free disk space exists in the cache to add
another chunk (element 710) Under most operating condi-
tions, the evictor 230 may have ensured that sufficient free
space is available in the depicted embodiment (in the form of
chunks that are designated as being in an “Unknown” state, as
described below in further detail with respect to FIG. 11). If
sufficient free space cannot be found, however, further pro-
cessing of the write miss may have to wait until sufficient
space becomes available, which may be achieved, e.g., by
forced eviction of one or more chunks (element 716). Once
sufficient space is found in the disk cache for the targeted

30

40

45

20

chunk, the inline metadata for the targeted data block B may
beinitialized (element 725). Details of block initialization are
described below with reference to FIG. 8. After the data block
B has been initialized, in some embodiments the client-up-
dated data may be modified or transformed using the trans-
form key of the chunk C (element 728) and written to the disk
cache (element 731).

If the target chunk C is found in the cache (as also deter-
mined in element 707), the chunk’s state may be determined.
The chunk may be in any of a number of states, including a
special “Needs-validation” state into which at least some
chunks may be placed during crash recovery, as described in
further detail below with reference to FIG. 12. If the chunk is
in “Needs-validation” state, C’s metadata in memory may be
validated using the inline metadata sections on disk in the
depicted embodiment (element 719), and after validation, the
state may be changed from needs-validation to, for example,
“Clean” or “Dirty” depending on the contents of the inline
metadata. If the chunk is not in “Needs-validation” state, or
after the validation operations indicated in element 719 are
completed, the in-memory metadata may be checked to see if
the targeted data block has already been written to the disk
cache (e.g., as a result of an earlier write request) (element
722). If the block was not previously written, the block may
be initialized (element 725). If the block was previously writ-
ten, initialization may not be required, and the modified data
may be written to the disk cache (element 731). It is noted that
in the case of a write hit in the cache, i.e., when a subsequent
client write is directed to the same block that was previously
written to the cache, no metadata updates may be required in
atleast some embodiments—e.g., the new modifications indi-
cated in the write request that resulted in the hit may simply be
applied to the data block, without any new updates to meta-
data.

FIG. 8 is a flow diagram illustrating aspects of the opera-
tion of a storage gateway appliance related to data block
initialization, according to at least some embodiments. Dur-
ing the time that a data chunk is present on a cache disk of the
storage gateway 180, numerous read and/or write requests
may be received, each directed to portions or all of one or
more data blocks of the chunk. Consider an example scenario
in which a chunk comprises 4 Megabytes of data, divided into
64 blocks, each of size 64 KB. During the lifetime of the
chunk within the cache (e.g., between the time that the chunk
is allocated and the time it is evicted), several I/Os directed to
the same 64 KB data block B (or to portions of the data block
B) may be received. In at least some embodiments, the first
time during this period that an [/O directed at B is received, B
may be “initialized” with respect to the disk cache. During
this initialization, an inline metadata entry or entries for the
data block may be written, as described below. When subse-
quent 1/Os are directed at B, inline metadata may not need to
beupdated in some implementations (unless the chunk’s state
changes from “Clean” to “Dirty” or vice versa). Thus, the
overhead of writing even the inline metadata may be kept
quite low in such implementations.

As shown in element 801 of FIG. 8, in the depicted embodi-
ment, a determination may be made (e.g., by cache disk pool
manager 202 or some other component of the storage gateway
appliance 180) that a block B of chunk C is to be initialized.
Such a determination may be made in response to a write miss
in the cache (as illustrated in element 725 of FIG. 7), or in
response to a read miss (as described below with respect to
FIG. 9). The appropriate inline metadata entries to be modi-
fied may then be identified. In some embodiments, in which
inline metadata sections alternate with the data blocks on the
cache disk, both inline metadata entries that are adjacent to

US 9,268,651 Bl

21

the data block B (the head and the tail inline metadata sec-
tions) may be modified. In other embodiments, only one
inline metadata section may be modified during initialization.
In different embodiments, a subset of the kinds of metadata
entries shown in FIG. 5 may be written to the inline metadata
section(s) (element 804 of FIG. 8), such as the block validity
mask (in which an additional bit may be set to indicate that a
new valid data block is being added), the state indicator
(which may be set, e.g., to “Clean” if the initialization is due
to a client’s read request, or to “Dirty” if the initialization is
being performed in response to a write request from a client),
and/or an updated metadata CRC.

If the client request that resulted in the initialization was a
write directed to a portion of the data block rather than to the
entire block (e.g., if the client submitted a write for 4 KB of a
64 KB block), in some embodiments the remainder of the data
block may be filled with an invalid data pattern (e.g., pattern
561 of FIG. 5). In some implementations, even in response to
aread request from a client, only a portion of a data block may
be retrieved from the remote storage service, and as a result
invalid data patterns may be written even in response to some
read requests. The portions of the block (if any) that are to be
filled with an invalidity indicator such as the invalid data
pattern 561 may be identified (element 807) and written to. As
noted above, while the cache storage of the appliance is
organized as data chunks in the depicted embodiment, with
each chunk comprising a plurality of data blocks, clients may
submit [/O requests in units that differ from the data block
size and the data chunk size—e.g., in one implementation,
4-megabyte data chunks may be used, each including 64 data
blocks of 64-kilobytes each, but clients may direct reads or
writes to any multiple of 512-byte units starting at any 512-
byte offset within the data chunk. In some implementations,
clients may submit I/O requests of any number of bytes, or
starting at any offset, so that alignment to 512-byte multiples
may not be required. In some embodiments, the portions of
the block that do not overlap with the client’s modifications in
the case of a write request (or the data downloaded from the
remote storage service for a client read request) may not be
completely filled with the invalidity indicator—e.g., the
invalidity indicator may be written only once in every 512
bytes or 1024 bytes while the remaining bytes may be initial-
ized with zeros in one implementation. Subsequently, the
valid portions of the data block may be written to the cache
disk (element 810). In some implementations, the data may
be transformed, e.g., using a data transform key 526 associ-
ated with the chunk C, before being written to disk, as was
also indicated in element 728 of FIG. 7.

FIG. 9 is a flow diagram illustrating aspects of the opera-
tion of a storage gateway appliance related to handling a
client read request, according to at least some embodiments.
As shown in element 901, a read request directed to at least a
portion of a block B of a chunk C may be received at a
component of the storage gateway appliance (such as the
cache disk pool manager 202) in the depicted embodiment.
Metadata (typically, in-memory metadata) may be checked to
determine whether chunk C is present in the cache (element
903). If chunk C is present, its state may be checked to
determine whether it is in “Needs-validation” state (element
907). If C is in “Needs-validation™ state, the corresponding
inline metadata sections may be read to update the in-memory
metadata (element 910). After a confirmation that the in-
memory metadata is valid (either as a result of reading the
inline metadata sections, or because the chunk C was not in
“Needs-validation” state), the in-memory metadata may be
checked to determine whether a valid block B is present in the
cache (element 913). In at least some embodiments, the valid-

25

35

40

45

55

22

ity of the block B may be checked by (a) verifying that the
block validity mask 551 confirms that the block is present and
(b) verifying that the data of block B does not contain any
instance of the invalidity indicator being used, such as invalid
data pattern 561. As noted above, it may be the case that, as a
result of an earlier client write request, the block validity
mask 551 indicates that the block is present in the cache in
some embodiments. However, if only a subset of the block
had been written by the client, some portion or all of the
remainder of the block may have been populated with one or
more invalidity indicators in such embodiments. Thus, while
the block validity mask may indicate that the block and its
metadata has been initialized, and that at least some of the
block’s data is valid, the mask by itself may be insufficient to
validate the block’s data considered as a whole. If either of the
above conditions is not met, e.g., if the block validity mask
does not indicate that B is valid and/or if an invalidity indi-
cator is found, the block may be considered invalid. If the
block is found to be valid, the contents of the block may be
read and returned to the requesting client (element 919). In
some implementations where a data transform key 526 is
being used, e.g., for enhanced data security, the data may be
transformed after reading from disk and before providing it to
the client.

Ifthe chunk C is not present in the cache (as determined in
element 903), at least a portion of C that comprises the block
B may be retrieved from the storage service (element 914). In
some embodiments, only the portion of the block that was
requested by the client may be obtained from the remote
storage service. In other embodiments, if the client requested
a subset of a block, the entire block may be retrieved, while in
yet other embodiments, a plurality of blocks comprising the
requested portion of data may be retrieved. In at least one
embodiment, depending for example on the pattern of
requests detected at the storage gateway appliance, one or
more prefetch operations (some of which may be performed
at a low priority) for blocks other than the specific block
requested by the client may be initiated, as described below in
further detail with respect to FIG. 13. A search for free cache
disk space for the retrieved data may be conducted (for
example, by determining whether at least one chunk desig-
nated as being in the “Unknown” state by the cache evictor is
present in the cache) (element 954). If free cache disk space is
found (as determined in element 957), inline metadata may be
initialized for the retrieved block or blocks (using operations
similar to those illustrated in FIG. 8), as indicated in element
971. In some embodiments, the retrieved data may be trans-
formed using the data transform key 526 prior to being writ-
ten to the disk.

If chunk C is present in the cache but a valid block B is not
present (as determined in element 913), a portion of the chunk
C that includes at least B may be retrieved from the storage
service (element 974). As described above with respect to
similar operations illustrated in element 951, more data than
just the specific portion indicated in the read request may be
retrieved in some embodiments, e.g., multiple blocks may be
retrieved, and/or a low-priority prefetch operation may be
initiated for the data not specifically requested. The inline
metadata may be updated to reflect the downloaded data (e.g.,
by updating the block validity mask 551) (element 977). In
some embodiments, if a portion of the downloaded block (or
blocks) was previously written to, and the modified portion is
present in the cache, a merge may be required between the
downloaded data and the previously-written data. In some
implementations, the data may be transformed using data
transform key 526 before being written to disk. If the block B
contained an invalidity indicator prior to the download of the

US 9,268,651 Bl

23

block from the remote storage service, the invalidity indicator
may be removed or overwritten when the retrieved data block
is written to the cache disk. The requested data may be pro-
vided to the client from whom the read request was received
(element 919).

Itis noted that at least in some embodiments, depending for
example on the types of programmatic interfaces exposed to
clients by the storage gateway appliance (e.g., by interface
manager 232), a single client /O request may comprise more
than one read request, more than one write request, or a
combination of read and write requests. When such an [/O
comprising multiple individual read and/or write requests is
received, the appliance may examine the individual requests,
and coalesce some of the requests if possible in some embodi-
ments (e.g., requests to read several small portions of data
blocks may be combined into one read request) before initi-
ating the appropriate types of operations illustrated in FIG. 7,
8 or 9. In other embodiments, each individual request may be
handled separately.

Chunk State Transitions

A given data chunk of a cached volume may pass through
several caching states during its residency in a storage gate-
way appliance cache in some embodiments. FIG. 10 illus-
trates example state transitions of a data chunk of a volume
cached at a storage gateway appliance, according to at least
some embodiments. In the illustrated embodiment, all chunks
may begin in the “UnUsed” state 1001, e.g., when disk space
is initially designated for a chunk, prior to any client I/O
requests, the chunk may be considered in “UnUsed” state. A
state transition labeled A may lead to the “Unknown” state
1003, indicating that the chunk is available for use for incom-
ing client read or write requests. State transition A may occur
when an “UnUsed” chunk is first pre-allocated (e.g., by evic-
tor 230 in response to determining that the number of chunks
usable for future client I/Os whose data is not already in the
cache has fallen below a threshold—further details regarding
evictor operation are provided below with respect to FIG. 11).

From the “Unknown” state, the chunk may move to
“Clean” state 1005 or “Dirty” state 1007. A chunk may be
said to be in “Dirty” state 1007 if at least one upload buffer
entry indicating client-initiated modifications to the chunk’s
data has not yet been uploaded to the storage service 120.
When all the outstanding upload buffer entries for a chunk
have been uploaded to the storage service 120, the chunk may
move from “Dirty” to “Clean” state, as indicated by transition
E. In the depicted embodiment, a chunk is considered to be in
“Clean” state when it has no outstanding upload buffer entries
that are yetto be uploaded to storage service 120. The “Clean”
state may be reached from the “Unknown” state (transition C)
if one or more data blocks were read from the storage service
in response to a read request from a client. Transition B, from
“Clean” to “Unknown”, may occur as a result of an eviction,
as described below in further detail. Transition F, from
“Clean” to “Dirty”, may occur when a client submits a write
request directed to a data block of a “Clean” chunk. Under
normal operating conditions, in the depicted embodiment,
chunks may typically be in “Clean”, “Dirty” or “Unknown”
state, transitioning between these three states depending on
when they are selected for eviction, upon the mix of read and
write requests received from clients, and/or upon the rate at
which upload bufter entries are uploaded to the storage ser-
vice 120.

Under certain conditions, the upload buffer for a given
cached volume may become full in the depicted embodi-
ment—e.g., if the rate at which uploads are performed falls
behind the rate at which new write operations are requested
by clients for a sustained period of time. If the upload buffer

10

15

20

25

30

35

40

45

50

55

60

65

24

becomes full, the cached volume may be moved from an
“Active” or “Normal” volume state to a “Pass-through” vol-
ume state (note that FIG. 10 illustrates chunk states, not
volume states). While a cached volume is in “Pass-through”
state in the depicted embodiment, if a new client write request
W is received that is directed to a chunk that is not present in
cache, and if all the chunks that are cached are in “Dirty”
state, a particular “Dirty” chunk D1 may be selected for
immediate upload to the storage service, so that the latest
write W can be accommodated in the cache. The chunk D1
may be selected for immediate upload using, for example, a
least-recently-used policy. If at least one chunk is in “Clean”
state when the write request W arrives, that clean chunk may
be evicted and replaced by the chunk to which W’s data
belongs in some embodiments. The volume may return to
“Active” state from “Pass-through” when a threshold amount
of'space becomes available in the upload buffer to accommo-
date entries for incoming writes.

In the embodiment depicted in FIG. 10, transition I from
“Dirty” to “Dirty-not-logged” state 1009 may occur if the
volume goes into “Pass-through” state, as described above,
while the chunk is in “Dirty” state. The “Dirty-not-logged”
state 1009 of a given chunk C may thus indicate that there are
at least some upload buffer entries of the chunk C that have
not yet been uploaded to the storage service, and that the
volume to which C belongs has entered but not yet exited the
“Pass-through” state. Transition H, from “Clean” to “Dirty-
not-logged”, may occur if a write to a block of a “Clean”
chunk is received while the volume is in “Pass-through” state.
Transition J from “Dirty-not-logged” to “Dirty” may occur
when the volume state changes from “Pass-through” back to
“Active” in the depicted embodiment, and at least one upload
buffer entry for the chunk remains to be uploaded to storage
service 120. Similarly, transition G from “Dirty-not-logged”
to “Clean” may occur if (a) the volume exits “Pass-through”
state and (b) all upload bufter entries for the chunk have been
uploaded.

In the depicted embodiment, if an uncontrolled shutdown
or crash occurs at the storage gateway appliance, as indicated
in element 1080 of F1G. 10, and the appliance is restarted after
the uncontrolled shutdown, at least some of the chunks may
be moved to a “Needs-validation” state 1011. In-memory
metadata reflecting the most current state of various blocks
and chunks may have been lost during the uncontrolled shut-
down, e.g., some of the current metadata may not have been
written to the contiguous metadata section at the time of the
shutdown. In order to be able to quickly resume client /O
operations, metadata may be read into memory from the
contiguous metadata section of each cache disk. While much
of'the metadata read in from the contiguous metadata section
may be valid, some portion may be invalid because, for
example, the corresponding inline metadata had not been
copied to the contiguous metadata section prior to the uncon-
trolled shutdown. The “Needs-validation” state may be used
to indicate that the in-memory metadata for the chunk is to be
validated using the corresponding inline metadata sections in
some embodiments.

In one embodiment, all the chunks of a cached volume that
were present in the cache at the time of the crash may be
placed in “Needs-validation” state (by modifying the
in-memory metadata’s state entry) upon restart after a crash.
Client I/O operations may be allowed to resume to a given
chunk as soon as all the contiguous metadata for the chunk
has been read into memory and the state of the chunk has been
changed to “Needs-validation” in memory. When a read
request or a write request is received, and the chunk is in
“Needs-validation” state, the extra step of synchronizing the

US 9,268,651 Bl

25

in-memory metadata with the inline metadata sections of the
chunk may be performed, as illustrated in element 719 of FIG.
7 and element 910 of FIG. 9. After the metadata is validated
using the inline metadata sections on disk, the chunk state
may change from “Needs-validation” to “Dirty” (transition Y
of FIG. 10), from “Needs-validation” to “Clean” (transition Z
of FIG. 10), or from “Needs-validation” to “Dirty-not-
logged” (transition X of FIG. 10). Transition X may occur if,
for example, the volume is in “Pass-through™ state during
restart because the upload buffer is full. Transition Y may
occur if the volume is not in “Pass-through” state and the
inline metadata indicates that the pre-crash state was “Dirty”,
and transition Z may occur of the volume is not in “Pass-
through” state and the inline metadata indicates that the pre-
crash state was “Clean”. In some embodiments, a complete
bootstrapping operation may be performed after a crash, in
which all the on-disk chunks of the volume are written to the
storage service 120, and the volume may be placed in “Pass-
through” state until the bootstrapping operation completes. In
one embodiment, at least a portion of the bootstrapping
operation may be performed at a low priority, e.g., using a
background process.

According to at least one embodiment, not all the chunks
that were present in the cache when the crash occurred may be
placed in “Needs-validation™ state upon restart. For example,
chunks that were in “Unknown” state (e.g., as result of a
recent eviction iteration) may be given special treatment in
some such embodiments. Instead of placing the chunk in
“Needs-validation” state, for example, which would result in
an eventual synchronization of in-memory metadata with the
inline metadata, the in-memory metadata for chunks that
were in “Unknown” state at the time if the crash may be
synchronized immediately with inline metadata, prior to
allowing any new client 1/O operations. In some embodi-
ments, not all the states and transitions illustrated in FIG. 10
may be implemented, while in other embodiments, additional
states and/or transitions may be implemented.

Cache Eviction

FIG. 11 is a flow diagram illustrating example cache evic-
tion operations at a storage gateway appliance according to at
least some embodiments. As noted earlier, a storage gateway
appliance 180 may comprise an evictor 230 in some embodi-
ments, responsible for preemptively freeing previously-allo-
cated disk space on cache disks. Evictions may be performed
in cycles or iterations in some embodiments, such that a
number of chunks are evicted together during a given cycle.
The scheduling of the start of an eviction cycles may be
determined based on any combination of various factors in
different embodiments, such as an amount of time that has
elapsed since the last eviction cycle, the arrival rates of client
write requests and/or read requests, measurements of network
traffic between the storage gateway appliance 180 and the
storage service 120, and so on. As shown in element 1101, the
evictor 230 may be activated to start a particular eviction
cycle, for example as a background or lower-priority task
with respect to the handling of read and write requests
described above. The evictor 230 may determine whether any
additional chunks need to be allocated (element 1103). Allo-
cation of a chunk may result in the chunk’s state being
changed to the “Unknown” state 1003 illustrated in FIG. 10.
Accordingly, when making the determination as to whether
more chunks need to be allocated, the evictor 230 may, for
example, check the current number of chunks in “Unknown”
state, and if that number is below a threshold, decide to
proceed with the eviction cycle. If the evictor 230 determines

10

15

20

25

30

35

40

45

50

55

60

65

26

that additional allocations are not required at this time, it may
sleep or wait until the next eviction cycle is triggered or
scheduled (element 1106).

If the evictor 230 determines that more chunks need to be
allocated, it may determine whether any chunks in “UnUsed”
state are available (element 1109). If there is at least one
chunk in “UnUsed” state, the chunk or chunk(s) in UnUsed
state may be selected for allocation (element 1112), e.g., by
marking their state as “Unknown” in the in-memory meta-
data. After allocating any available “UnUsed” chunks, the
evictor may determine whether the threshold number of free
chunks has been reached, or whether some previously allo-
cated chunks have to be evicted from the cache (element
1118). If some chunks have to be evicted, an eviction set of N
chunks may be identified from among the chunks currently in
the disk cache (element 1115). The eviction set may be
selected based on any combination of several criteria in dif-
ferent embodiments, such as, for example, how recently the
chunks were accessed by clients. A least-recently-used selec-
tion policy may be employed in some implementations to
identify specific chunks for inclusion in the eviction set. In at
least one embodiment, chunks may be chosen for eviction
based at least in part on how frequently they are accessed by
clients—e.g., a “least-frequently-used” policy may be used
for selecting eviction candidates. In one embodiment, locality
may be used for selecting eviction set candidates—e.g., two
or more chunks that are physically adjacent on disk may be
selected for eviction, in preference to chunks that are not
adjacent, so as to optimize for large sequential writes. Thus,
the proximity of location or address of a given chunk, to the
locations or addresses of other chunks being considered for
eviction, may serve as a criterion for inclusion of the given
chunk in the eviction set in such embodiments. In some
embodiments, the evictor may only select chunks that are
already in “Clean” state (because they have no outstanding
upload buffer entries that have to be uploaded to the storage
service), while in other embodiments the evictor may select
“Dirty” chunks and expedite the upload of entries from the
upload buffer during the eviction cycle for the “Dirty” chunks
so that the chunks may be included in the eviction set. Meta-
data indicating “Clean” versus “Dirty” chunk state may be
used to select candidates for the eviction set even in some
embodiments in which upload buffers are not used. As
explained below with respect to FIG. 12, the number of
chunks that are evicted at a given time (i.e., the size “N” of the
eviction set) may potentially impact the time it takes to
recover after an unplanned shutdown of the appliance, since
different recovery-related operations may be performed for
chunks in “Unknown” state than for chunks in other states in
at least some embodiments. Accordingly, in such embodi-
ments, the evictor may be configured to select a size of the
eviction set that keeps the total number of “Unknown” state
chunks below a threshold value, to reduce the likelihood of
long recovery times.

After an eviction set with an adequate number of chunks
(e.g., enough chunks to reach a target desired number of
“Unknown” state chunks) has been found, the evictor may
generate new metadata for the eviction set’s chunks (element
1121) in the depicted embodiment. The new metadata may
include, for example, “Unknown” state indicators 546, new
data transform keys 526, new invalid data patterns 561, and
new cache entry instance identifiers 521 in various embodi-
ments. The new cache entry instance identifier 521 of a given
cache may serve as an indicator of a new usage period for the
cache disk space allocated to the chunk, and may be used later
to invalidate out-of-date data blocks that may remain in the
cache disk space from a previous usage period. In at least

US 9,268,651 Bl

27

some implementations, the same string may be used as a data
transform key 526, an invalid data pattern 561, or a cache
entry instance identifier 521—e.g., a single 128-bit or 256-bit
value may be generated for use for several of these purposes
(thus reducing the size of the metadata for each chunk and/or
data block). The data blocks present on the cache disks (and
the corresponding inline metadata sections) may not be over-
written during eviction in the depicted embodiment. Instead,
new metadata elements may be generated in memory and
written to the contiguous metadata area of the cache disk(s),
as shown in element 1131 of FIG. 11. In atleast some embodi-
ments, the new metadata may be written in bulk (e.g., using a
few sequential writes, with each write comprising metadata
elements for a plurality of chunks of the eviction set), instead
of being written in separate writes for each chunk of the
eviction set. At the end of the operations corresponding to
element 1131 in the depicted embodiment, the state of each of
the chunks of the eviction set (in memory and in the contigu-
ous metadata sections of the cache disk(s)) has been set to
“Unknown”, new metadata entries such as the cache entry
instance identifiers are present in memory and in the contigu-
ous metadata section on disk, while the data blocks and inline
metadata entries may remain as they were before the eviction
iteration began. The evictor may resume its sleep (element
1106) until the next eviction cycle is started.

Following the eviction iteration depicted in FIG. 11, when
a new data block is to be written for a chunk that is currently
not present in the cache, one of the “Unknown” state chunks
may be selected for use in the depicted embodiment. Depend-
ing on whether the new data block is being written as a result
of a client-requested or a client-requested write, the state of
the chunk (in memory and/or in the inline metadata section
for the data block) may be set to “Dirty” (for a write) or
“Clean” for a read. Operations corresponding to the use of an
“Unknown” state chunk for a client write are illustrated in
elements 710 onwards of FIG. 7, and for a client read in
elements 954 onwards of FIG. 9. By performing evictions
proactively as described above, before the free disk space
available for the cache falls to very low levels, the storage
gateway appliance 180 may be able to reduce the variability
of responsiveness to client /O requests, since enough chunks
may typically be freed by the evictor often enough to avoid
long delays when free chunks for incoming client requests are
needed.

In at least one embodiment, various parameters associated
with cache eviction, such as the size of the eviction set, the
interval between eviction cycles, and/or the priority of the
eviction process, may be tunable. Various performance and/or
other statistics associated with the use of the gateway appli-
ance may be collected in some embodiments, such as the
mean time taken to obtain a free chunk for writing data
submitted by a client as part of a write request, the mean time
taken to obtain a free chunk for storing data downloaded from
the storage service 120 for a client read request, the number of
times that read request processing failed to find a free chunk,
the mean number of chunks in “Unknown” state, the utiliza-
tions of the cache disks, the utilizations of the storage gateway
appliance processors, and/or the time taken for an eviction
cycle (which may be a function of the priority of the evictor).
In at least some embodiments, the distribution of these met-
rics over time may be determined, i.e., more statistics than
just the mean values may be determined. Based at least in part
on some subset or all of the collected metrics, eviction param-
eters may be automatically tuned in some embodiments. For
example, the size of the eviction set may be decreased if, or
the interval between eviction cycles may be increased, if the

40

45

50

55

28

statistics indicate that in almost every case that a free chunk is
needed, it can be found very quickly.
Crash Recovery

FIG. 12 is a flow diagram illustrating aspects of the opera-
tion of a storage gateway appliance after a restart following an
unexpected shutdown or crash, according to at least some
embodiments. In at least some embodiments, one of the
design goals of the storage gateway appliance 180 may be to
minimize the downtime resulting from an unplanned shut-
down—e.g., when one of the appliance’s processes crashes
unexpectedly, a goal may be to resume client 1/Os as quickly
as possible. In order to resume client I/Os, in-memory meta-
data for the cached chunks (which was lost in the shutdown)
may have to be rebuilt from on-disk metadata (the vast major-
ity of which, except for any in-flight metadata writes to disk at
the time of the shutdown, may typically survive the shut-
down). In embodiments in which at least a portion of the
current on-disk metadata is stored in inline metadata sections
on disk, as illustrated in FIG. 3, a substantial amount of time
may be required to read all the inline metadata, especially for
large cached volumes which may span terabytes or more of
disk space. Therefore, in keeping with the goal of minimizing
the time for which client I/O operations are suspended or
disabled, in at least some embodiments a recovery technique
that relies on quickly reading metadata for the chunks from
the contiguous metadata section(s) 352 on disk may be
employed.

As shown in element 1201 of FIG. 12, recovery of the
storage gateway appliance 180 may be initiated to bring the
appliance into a running or active state after an unplanned
shutdown or crash. All in-memory metadata may have been
lost due to the shutdown in the depicted embodiment. The
recovery may begin by selecting the next chunk C whose
metadata is to be examined and/or reconstructed (element
1203) in some embodiments. In order to rebuild the
in-memory metadata for a given chunk C stored on a particu-
lar cache disk 250, the contiguous metadata section of the
cache disk for that chunk C (as well as the contiguous meta-
data for other chunks stored on the disk) may be read into
memory (element 1204). Because of the contiguous storage
of' metadata for numerous chunks, only a few, relatively large
disk reads may be required in some implementations to load
metadata for a plurality of chunks in to memory, thus reduc-
ing the total number of 1/Os needed during this phase of
recovery. Depending on the state of the chunk C as indicated
in the contiguous metadata, different sets of actions may be
taken next in the depicted embodiment. Depending on the
size of the eviction set relative to the total number of chunks
resident on disk, and on the rate at which client I/Os occur, in
at least some embodiments a relatively small number of
chunks may be in “Unknown” state (as a result of an eviction
cycle as illustrated in FIG. 11), while the majority of chunks
may be in other states such as “Dirty” or “Clean”.

If a given chunk C is not in the “Unknown” state (as
determined in element 1204), C’s state indicator 546 may be
changed to “Needs-validation” (element 1212) as an indica-
tion of a validation requirement for the chunk’s metadata. In
some implementations, the new state indicator value may
only be updated in memory, while in other implementations
the new state indicator value may also be written to the con-
tiguous metadata section of the disk. After the chunk’s state is
changed to “Needs-validation”, in the depicted embodiment,
a determination may be made as to whether metadata for all
the chunks of the storage object (e.g., the volume comprising
the chunks) have been examined (element 1214). If all the
chunks have been considered, client 1/Os directed to the stor-
age object may be resumed (element 1216), i.e., the storage

US 9,268,651 Bl

29

object may be designated as being accessible for client I/O
requests. If some chunks have not yet been examined, the next
chunk may be selected (element 1203), and the metadata
analysis for this next chunk may begin. Thus, in the embodi-
ment depicted in FIG. 12, contiguous metadata for all the
chunks of a given cached volume may have to be read, and all
the chunks may have to be brought into “Needs-validation”
state (or out of the “Unknown” state) before any client I/Os to
any particular chunk of the volume are enabled. In other
embodiments, such a requirement may not apply—e.g., [/O
access may be enabled a chunk at a time, as soon as the
chunk’s metadata has been examined and its state changes
accordingly, rather than to the entire volume at once. The fact
that a given chunk C is in “Needs-validation” state may lead
to the reading of the inline metadata sections of the chunk C
into memory when a new 1/O request directed to the chunk is
received, prior to performing the requested I/O operations.
The operations performed in response to client [/O requests
when the targeted chunk is in “Needs-validation™ state were
described above (e.g., in the description related to element
713 of FIG. 7 and element 910 of FIG. 9) for at least some
embodiments. The retrieval of the most current state of the
metadata (from the inline metadata sections on disk) for a
chunk may thus be deferred until the first post-recovery 1/O
directed to the chunk is received in the embodiment of FIG.
12. Although this retrieval of inline metadata may result in a
longer than typical response time for that first /O, such a
deferral may help reduce the average time that client 1/O
requests are disabled or suspended due to the crash in the
depicted embodiment, and thus may reduce overall average
client I/O response times.

In the depicted embodiment, if the state of a given chunk C
is “Unknown” according to the chunk’s contiguous metadata
(as determined in element 1208), the most current valid meta-
data for the chunk C may be reconstructed in memory from
the inline metadata sections (element 1251) prior to checking
whether all the chunk states have been examined (element
1214). Since only a relatively small number of chunks may
typically be in “Unknown” state at the time of a crash, the
total time taken for their metadata validation may typically be
fairly short. As mentioned earlier, in at least some embodi-
ments the evictor may be configured to select the eviction set
size so as to limit the impact of “Unknown” state chunks on
crash recovery—i.e., by keeping the number of chunks
evicted during a given eviction iteration below a threshold,
and/or by adjusting or tuning the size of the eviction set as
needed. In some embodiments, metrics of crash recovery
times may be tracked, and eviction set size may be reduced if
recovery is found to be taking too long as a result of too many
recently-evicted chunks in the “Unknown” state. The valida-
tion process for “Unknown” state chunks may include deter-
mining which (if any) data blocks of the chunk are valid,
using cache entry instance identifiers 521. If the cache entry
instance identifier “CEll-inline” of a given block B, as indi-
cated in the block’s contiguous metadata section, differs from
the cache entry instance identifier “CEll-contiguous”
obtained from the contiguous metadata section, block B may
be rejected as invalid (since “CEIll-contiguous” is assumed to
be the more recent of the two identifiers, having been set
during the most recent eviction cycle in which the chunk was
selected for eviction) in the depicted embodiment. The block
validity mask 551 may be set accordingly, within the in-
memory metadata, the inline metadata section, and/or the
contiguous metadata section.

In at least some embodiments, the types of recovery-re-
lated operations illustrated in FIG. 12 may be performed in
parallel for more than one chunk, e.g., to further reduce the

25

35

40

45

30

time before client I/Os are re-enabled. In some embodiments,
in which upload buffer entries are used to upload client-
initiated data modifications to the storage service 120, at least
some of the contents of the upload buffer may also have to be
reconstructed after a crash, e.g., as part of a foreground or
background bootstrapping process. In one embodiment, the
bootstrapping process, which may involve re-generating
upload buffer requests for some portions or all of the blocks
written to the cache as a result of earlier write requests, may
have to be completed before client-initiated I/O operations
are allowed.

Cache Population Optimization

As shown in FIG. 1, at least in some embodiments, data
transferred in one or both directions between a storage gate-
way appliance 180 and a storage service 120 may pass
through one or more intermediate servers 130. For example,
when a client submits a read request for a block of data that is
not present in the cache at the storage gateway appliance, a
request for the data may be sent from the storage gateway
appliance to a selected intermediate server 130, e.g., over an
external network 144. In at least some embodiments, the
appliance may be responsible for selecting a particular inter-
mediate server (e.g., from among a pool of available interme-
diate servers) to be used for communication with the remote
storage service. In other embodiments, other techniques may
be used to determine the particular intermediate server 130 to
be used—e.g., a load-balancer may be used to distribute
requests from various appliances among a set of intermediate
servers, or a particular intermediate server may be selected for
use by the appliance when the appliance is initialized or
restarted. The intermediate server 130 may retrieve the
requested data from the storage service 120 over an internal
network 140, which at least in some embodiments may have
a higher bandwidth capacity and/or lower latency than the
external network 144. The intermediate server 130 may then
transmit the requested data to the storage gateway appliance
over the external network 144. In some embodiments, the
intermediate server 130 may be configurable to optimize data
transfers to the storage gateway appliance 180, e.g., by pre-
fetching data blocks in anticipation of future client /O
requests. The storage gateway appliance 180 may provide
hints to the intermediate server 130 to facilitate such optimi-
zations in some implementations, e.g., based on patterns of
1/O requests received from clients, the likelihood of a future
request for a particular block may be estimated and provided
to the intermediate server 130. The benefits of such optimi-
zations may be particularly significant in embodiments in
which the units in which data is typically transferred to and
from the storage service (such as 4-megabyte chunks) are
larger than the units in which clients typically perform reads
and writes (often, a few kilobytes at a time). In such embodi-
ments, the intermediate server 130 may have to retrieve more
data from the storage service than specified in a client read
request, simply because of the minimum unit of data transfer
that the storage service 120 supports. As a consequence,
transmitting additional data blocks to the storage gateway
appliance 180 than requested by the client in anticipation of
possible future requests, especially at a lower transfer prior-
ity, may not impose much overhead, and may help enhance
the responsiveness of the storage gateway appliance to future
client requests substantially.

FIG. 13 is a flow diagram illustrating aspects of optimiza-
tion operations that may be performed in an environment in
which data is transmitted between a storage gateway appli-
ance 180 and an intermediate server 130 over a low perfor-
mance network such as a WAN, according to at least some
embodiments. In the depicted embodiment, data may be

US 9,268,651 Bl

31

transferred to and from the storage service in chunks, where
each chunk comprises a plurality of data blocks. The chunk
sizes and/or block sizes used may differ in various embodi-
ments—for example, in one embodiment, each chunk may
comprise 4 megabytes of data, comprised of 64 blocks of 64
kilobytes each, while in another embodiment, 8-megabyte
chunks may be used with each chunk comprising 64 blocks of
128 kilobytes each. As shown in element 1301, a client read
request for block B of a chunk C of a cached volume may
result in a read miss, i.e., the requested data block B and
chunk C may not be found in the cache being implemented
using cache disks 250. A first data transfer comprising the
chunk C may be initiated, from the remote storage service 120
to the intermediate server 130 (element 1304) over a first
network path with a first bandwidth capacity W1.

The intermediate server 130 may be configured to deter-
mine which subsets of chunk C are to be transferred on to the
storage gateway appliance 180, how many distinct data trans-
fers are to be used to send the data to the storage gateway
appliance, and/or the relative priorities of the data transfers
(element 1308). At a minimum, the intermediate server 130
may decide to send only the bytes explicitly requested by the
client. Depending on one or more criteria, the intermediate
server 130 may decide to send more data than was explicitly
requested, either within the same data transfer or in the form
of additional transfers. Any of a variety of criteria may be
used in different embodiments to determine the contents of
the data transfer(s), such as the client access patterns
observed (e.g., whether clients are accessing data from the
volume to which B belongs randomly, with some spatial
locality such that nearly blocks are accessed within a short
amount of time, or sequentially), utilizations of the proces-
sors, memory, network and/or storage devices at the interme-
diate server or the appliance, measured latencies of network
transfers to the appliance, or utilization levels or congestion
characteristics of network links between the intermediate
server 130 and the storage gateway appliance 180. The spe-
cific blocks to be included as part of a pre-fetch data transfer
may be identified by the intermediate server 130, or hints as to
which additional blocks should be sent may be provided by
the storage gateway 180. For example, in one embodiment, if
a read was requested for a portion or all of a block Bk of a
chunk C, where block Bk starts at offset K within the chunk,
the set of pre-fetched blocks may include all the blocks of the
chunk that have offsets higher than K. In another embodi-
ment, all the remaining blocks of the chunk (i.e., blocks other
than Bk) may be included in the pre-fetched set, regardless of
their offset.

In scenarios where the intermediate server 130 determines
to send the data in more than one transfer, the relative priori-
ties of the different transfers may be assigned based on some
combination of similar criteria as those used to determine the
number of data blocks to transmit. For example, a network
transfer scheduler or packet scheduler may send the explicitly
requested data at a high priority, and schedule any additional
transfers at lower priorities in some embodiments. A number
of different schemes may be used to implement different
transfer priorities in various implementations—e.g., some
network devices or paths may be designated for high priority
transfers while other devices or paths may be set aside for
lower priority transfers, or protocols that support multiple
quality of service (QoS) levels may be used.

In some embodiments, data may be transferred from the
storage service 120 to the intermediate server 130 in com-
pressed format. Accordingly, the intermediate server 130 may
decompress the data and extract the subset of the uncom-
pressed data that is to be transferred to the storage gateway

10

15

20

25

30

35

40

45

50

55

60

65

32

appliance 180 in such embodiments (element 1310). The
extracted data may itself be compressed at the intermediate
server 130 before its transfer to the storage gateway appliance
180. In one embodiment, the intermediate server 130 may
also be responsible for performing other computations or
transformations on the data—e.g., decrypting the received
chunk C and encrypting the blocks being sent to the storage
gateway 180, verifying that C has not been corrupted (e.g.,
with the help of a checksum value received from the storage
service for the chunk C), and/or computing a respective
checksum value for each of the data blocks or transfers to the
storage gateway appliance 180 and transmitting the check-
sum values to the appliance. In some embodiments such
operations may be performed only for the received data
chunk, and not for the data sent on to the appliance—for
example, the chunk may be received in a compressed format,
decompressed at the intermediate server, and transferred in
uncompressed format to the appliance. In other embodi-
ments, the operations may be performed only for the data
transfers to the appliance—for example, the chunk may be
received at the intermediate server in uncompressed format,
and the intermediate server may compress the data before
transmitting it to the appliance. Similarly, in some embodi-
ments checksums may be computed and transmitted only for
the data sent from the intermediate server, and not for the
chunks received at the intermediate server; or only for the
chunks received, and not for the data sent from the interme-
diate server.

Having determined the number, content, and relative pri-
orities of the data transfers, the intermediate server 130 may
initiate the transfers to the storage gateway appliance 180
over an external network 144, such as a WAN, with a different
(typically, lower) bandwidth capacity W2 than the capacity
W1 of the network path between the storage service 120 and
the intermediate server 130 (element 1312). When the data
that was requested reaches the storage gateway appliance
180, it may be stored on local storage (e.g., chunks on cache
disks 250) if sufficient space is available (element 1316). The
requested data may be provided to the client, whether there
was sufficient local storage space available or not, in at least
some implementations (element 1320). Similarly, when addi-
tional blocks of chunk C arrive at the storage gateway, they
may be stored in anticipation of future /O requests if suffi-
cient space is available on local storage, and may simply be
discarded if space is not available in some embodiments. In at
least one embodiment, if there is a shortage of free disk space
at the storage gateway appliance 180, the appliance may
provide an indication of low free space to the intermediate
server 130, which may be used by the intermediate server 130
to determine how much data to transfer.

After a read request for a block B is received at the storage
gateway appliance 180 and before the block B is received at
the appliance from the intermediate server 130, a write
request targeted to at least a portion of B may be received at
the appliance. In such a scenario, the appliance may store the
data modified by the client in its local storage (such as a cache
disk 250) and merge the modifications with the block B when
the latter is received from the intermediate server 130 in some
embodiments.

In at least some embodiments, after a client requests a read
for a particular block B1 of chunk C, the intermediate server
130 may schedule the transfer of additional data blocks B2,
B3, ..., Bn of the chunk C as described above. Before the
additional blocks are received at the storage gateway appli-
ance 180, another client request to read block Bk may be
received, and the storage gateway appliance may accordingly
transmit a request for Bk to the intermediate server 130. When

US 9,268,651 Bl

33

the intermediate server 130 receives the request for Bk, it may
respond as follows. If Bk is one of the additional data blocks
B2, ... Bn, and the transfer of Bk has already been initiated
(and also depending in some implementations on other fac-
tors such as how long ago the additional pre-fetched blocks
were sent), the intermediate server may in one embodiment
ignore the new request for Bk, assuming that the in-progress
transmission of Bk will be sufficient to meet the client’s
needs. [fthe blocks B2, ..., Bnhave already been sent at a low
priority, the intermediate server 130 may schedule an addi-
tional high-priority transfer of Bk alone to the appliance 180
in some embodiments. If the blocks B2, . . ., Bn have not yet
been transmitted, the intermediate server 130 may increase
the priority of Bk’s transfer in some embodiments. If the
additional blocks B2, . . ., Bn do not comprise Bk, a high-
priority transter of Bk may be initiated from the intermediate
server 130 to the appliance 180. Since Bk has already been
downloaded as part of chunk C from the storage service 120,
no additional downloads from the storage service 120 may be
required.

In at least some embodiments, the storage gateway appli-
ance 180 may be aware of the additional blocks that the
intermediate server 130 is going to transfer. For example, in
one implementation, the intermediate server 130 may be con-
figured to always schedule the transfer of all the remaining
blocks B2, .. ., Bx of a chunk C when a particular block B1
of chunk C is requested by a client, with the remaining blocks
normally being transferred at a lower priority with respect to
the requested block. If a request for block Bk of chunk C is
received at the appliance after the request for B1 has been sent
to the intermediate server 130 and before the remaining
blocks B2, . . ., Bx are received at the appliance, the storage
gateway appliance may respond to the new read request for
Bk in one of several ways in different embodiments. In one
embodiment, a new request for Bk may be sent to the inter-
mediate server 130. In another embodiment, depending for
example on metrics collected at the appliance for the time
taken for other low-priority pre-fetch transfers in the recent
past, the appliance 180 may simply wait for Bk to arrive as
part of the low-priority transfer. In some embodiments, the
appliance 180 may send a request for a high-priority transfer
of Bk to the intermediate server and also request a cancella-
tion of the low-priority transfer of Bk.

In some embodiments, an intermediate server 130 and/or a
storage gateway appliance 180 may perform de-duplication
operations which may help to reduce the total network traffic
that occurs. Before sending a particular data chunk (or a
portion of a chunk) to the remote storage service 120, or to a
storage gateway appliance 180, for example, a hashing based
de-duplication technique may be used in some embodiments
to determine whether part or all of the data is already present
at the intended destination of the data transfer, and if it is
present, the data transfer may be avoided or reduced in size. It
is noted that in some embodiments, at least some of the
operations illustrated in the flow diagrams of FI1G. 6, 7, 8, 9,
11, 12 or 13 may be performed in a different order than that
shown, performed in parallel with other illustrated opera-
tions, or omitted.

Use Cases

The techniques described above of supporting efficient
caching of client data at storage gateway appliances may be
beneficial in a number of different environments. Clients with
very large amounts of application data, only a subset of which
typically has to accessed or manipulated within a given period
of time, may be able to take advantage of the high perfor-
mance offered by caching at the appliance, while relying on
the security and reliability guarantees of the storage service

10

15

20

25

30

35

40

45

50

55

60

65

34

for the bulk of their data. In at least some scenarios, clients
may be able to deploy fairly cheap commodity storage hard-
ware for the cache disks, while relying on the storage service
for extremely high availability for the primary copy of the
application data. Clients may be able to dynamically change
the size of the cached portion of their data, thus accommo-
dating changing workloads over time. The intelligent eviction
techniques described above may help to reduce response time
variations for client I/O requests, and the rapid recovery tech-
niques may help to reduce the downtime associated with
crashes.

The optimization features supported by the intermediate
servers may allow cached volumes to be supported with high
performance levels even in environments where relatively
slow WAN links are required for data transfer between the
storage gateway appliance and the intermediate servers. The
interface management capabilities of the storage gateway
appliance may efficiently support clients whose applications
rely on a variety of different protocols—e.g., file system
access protocols may be supported concurrently with block
storage protocols by the same appliance. Cached volumes
may be suitable for a variety of different applications includ-
ing user home directories, backups, and database storage.
Tlustrative Computer System

In at least some embodiments, a server that implements a
portion or all of one or more of the technologies described
herein, including the techniques to implement the function-
ality of the storage gateway appliance, the intermediate serv-
ers, and/or the storage service, may include a general-purpose
computer system that includes or is configured to access one
or more computer-accessible media. FIG. 14 illustrates such
a general-purpose computing device 3000. In the illustrated
embodiment, computing device 3000 includes one or more
processors 3010 coupled to a system memory 3020 via an
input/output (1/0) interface 3030. Computing device 3000
further includes a network interface 3040 coupled to 1/O
interface 3030.

In various embodiments, computing device 3000 may be a
uniprocessor system including one processor 3010, or a mul-
tiprocessor system including several processors 3010 (e.g.,
two, four, eight, or another suitable number). Processors 3010
may be any suitable processors capable of executing instruc-
tions. For example, in various embodiments, processors 3010
may be general-purpose or embedded processors implement-
ing any of a variety of instruction set architectures (ISAs),
such as the x86, PowerPC, SPARC, or MIPS ISAs, or any
other suitable ISA. In multiprocessor systems, each of pro-
cessors 3010 may commonly, but not necessarily, implement
the same ISA.

System memory 3020 may be configured to store instruc-
tions and data accessible by processor(s) 3010. In various
embodiments, system memory 3020 may be implemented
using any suitable memory technology, such as static random
access memory (SRAM), synchronous dynamic RAM
(SDRAM), nonvolatile/Flash-type memory, or any other type
of memory. In the illustrated embodiment, program instruc-
tions and data implementing one or more desired functions,
such as those methods, techniques, and data described above,
are shown stored within system memory 3020 as code 3025
and data 3026.

In one embodiment, I/O interface 3030 may be configured
to coordinate [/O traffic between processor 3010, system
memory 3020, and any peripheral devices in the device,
including network interface 3040 or other peripheral inter-
faces. In some embodiments, I/O interface 3030 may perform
any necessary protocol, timing or other data transformations
to convert data signals from one component (e.g., system

US 9,268,651 Bl

35

memory 3020) into a format suitable for use by another com-
ponent (e.g., processor 3010). In some embodiments, 1/O
interface 3030 may include support for devices attached
through various types of peripheral buses, such as a variant of
the Peripheral Component Interconnect (PCI) bus standard or
the Universal Serial Bus (USB) standard, for example. In
some embodiments, the function of /O interface 3030 may be
split into two or more separate components, such as a north
bridge and a south bridge, for example. Also, in some
embodiments some or all of the functionality of 1/O interface
3030, such as an interface to system memory 3020, may be
incorporated directly into processor 3010.

Network interface 3040 may be configured to allow data to
be exchanged between computing device 3000 and other
devices 3060 attached to a network or networks 3050, such as
other computer systems or devices as illustrated in FIG. 1
through FIG. 13, for example. In various embodiments, net-
work interface 3040 may support communication via any
suitable wired or wireless general data networks, such as
various types of Ethernet networks, for example. Addition-
ally, network interface 3040 may support communication via
telecommunications/telephony networks such as analog
voice networks or digital fiber communications networks, via
storage area networks such as Fibre Channel SANs, or via any
other suitable type of network and/or protocol.

In some embodiments, system memory 3020 may be one
embodiment of a computer-accessible medium configured to
store program instructions and data as described above for
FIG. 1 through FIG. 13 for implementing embodiments of the
corresponding methods and apparatus. However, in other
embodiments, program instructions and/or data may be
received, sent or stored upon different types of computer-
accessible media. Generally speaking, a computer-accessible
medium may include non-transitory storage media or
memory media such as magnetic or optical media, e.g., disk
or DVD/CD coupled to computing device 3000 via I/O inter-
face 3030. A non-transitory computer-accessible storage
medium may also include any volatile or non-volatile media
such as RAM (e.g. SDRAM, DDR SDRAM, RDRAM,
SRAM, etc.), ROM, etc, that may be included in some
embodiments of computing device 3000 as system memory
3020 or another type of memory. Further, a computer-acces-
sible medium may include transmission media or signals such
as electrical, electromagnetic, or digital signals, conveyed via
a communication medium such as a network and/or a wireless
link, such as may be implemented via network interface 3040.
Portions or all of multiple computing devices such as that
illustrated in FIG. 13 may be used to implement the described
functionality in various embodiments; for example, software
components running on a variety of different devices and
servers may collaborate to provide the functionality. In some
embodiments, portions of the described functionality may be
implemented using storage devices, network devices, or spe-
cial-purpose computer systems, in addition to or instead of
being implemented using general-purpose computer systems.
Theterm “computing device”, as used herein, refers to at least
all these types of devices, and is not limited to these types of
devices.

CONCLUSION

Various embodiments may further include receiving, send-
ing or storing instructions and/or data implemented in accor-
dance with the foregoing description upon a computer-acces-
sible medium. Generally speaking, a computer-accessible
medium may include storage media or memory media such as
magnetic or optical media, e.g., disk or DVD/CD-ROM, vola-

20

25

30

35

40

45

55

60

36

tile or non-volatile media such as RAM (e.g. SDRAM, DDR,
RDRAM, SRAM, etc.), ROM, etc, as well as transmission
media or signals such as electrical, electromagnetic, or digital
signals, conveyed via a communication medium such as net-
work and/or a wireless link.

The various methods as illustrated in the Figures and
described herein represent exemplary embodiments of meth-
ods. The methods may be implemented in software, hard-
ware, or a combination thereof. The order of method may be
changed, and various elements may be added, reordered,
combined, omitted, modified, etc.

Various modifications and changes may be made as would
be obvious to a person skilled in the art having the benefit of
this disclosure. It is intended to embrace all such modifica-
tions and changes and, accordingly, the above description to
be regarded in an illustrative rather than a restrictive sense.

The invention claimed is:

1. A method, comprising:

in response to a determination to bring a storage appliance

into a running state after an unplanned shutdown,

wherein the appliance is configured to cache a plurality

of data chunks of a storage object of a remote storage

service,

reading into an in-memory metadata region, from a first
metadata location of the appliance, chunk metadata
corresponding to a particular data chunk of the plu-
rality of data chunks;

based at least in part on an analysis of a portion of the
chunk metadata, storing an indication of a validation
requirement in the in-memory metadata region for the
particular data chunk;

designating the particular data chunk as being accessible
for input/output (I/0) requests after the indication of
the validation requirement has been stored; and

in response to receiving, after said designating, an I/O

request targeted to at least a portion of the particular data
chunk, validating at least a portion of the chunk meta-
data using a different metadata storage location of the
appliance, prior to performing one or more /O opera-
tions indicated in the I/O request.

2. The method as recited in claim 1, wherein the first
metadata location comprises a portion of a first space of a
storage device, wherein the first space is designated to store
contiguous metadata for one or more cached data chunks of
the storage object, including the particular data chunk; and
wherein the different metadata location comprises an inline
metadata section stored in a second space of the storage
device, wherein the second space is configured to store the at
least a portion of the particular data chunk.

3. The method as recited in claim 1, wherein the analysis
comprises determining whether a caching state of the particu-
lar data chunk, as indicated within the chunk metadata,
belongs to a particular set of caching states.

4. The method as recited in claim 1, further comprising:

in response to the determination to bring the storage appli-

ance into the running state,

reading into the in-memory metadata region, from the
first metadata location, second chunk metadata corre-
sponding to a second data chunk of the plurality of
data chunks;

based at least in part on an analysis of the second chunk
metadata, updating at least a portion of the second
chunk metadata in the in-memory metadata region
using contents of an inline metadata location of the
appliance prior to accepting 1/O requests targeted at
the second data chunk.

US 9,268,651 Bl

37

5. The method as recited in claim 1, wherein the appliance
comprises an upload buffer configured to store modified data
of the storage object to be uploaded asynchronously to the
remote storage service, further comprising:

in response to the determination to bring the storage appli-

ance into the running state, adding an entry to the upload
buffer, wherein the entry comprises contents one or
more data blocks of the particular data chunk.

6. A system, comprising:

one or more hardware computing devices configured to:

in response to a determination to bring a storage appli-
ance into a running state after an unplanned shut-
down, wherein the appliance is configured to cache a
plurality of data chunks of a storage object of aremote
storage service,
read into an in-memory metadata region, from a first
metadata location of the appliance, chunk metadata
corresponding to a particular data chunk of the
plurality of data chunks;
based at least in part on an analysis of a portion of the
chunk metadata, store an indication of a validation
requirement for the particular data chunk;
designate the particular data chunk as being acces-
sible for input/output (I/O) requests after the indi-
cation of the validation requirement has been
stored; and
in response to receiving, after the designation of the
particular data chunk, an I/O request targeted to at
least a portion of the particular data chunk, validate at
least a portion of the chunk metadata using a different
metadata storage location of the appliance, priorto a
completion of one or more 1/O operations indicated in
the 1/O request.

7. The system as recited in claim 6, wherein the indication
of the validation requirement is stored in the in-memory
metadata region.

8. The system as recited in claim 6, wherein the first meta-
data location comprises a portion of a first space on a storage
device, wherein the first space is designated to store contigu-
ous metadata for one or more cached data chunks of the
storage object, including the particular data chunk; and
wherein the different metadata location comprises an inline
metadata section stored in a second space of the storage
device, wherein the second space is configured to store the at
least a portion of the particular data chunk.

9. The system as recited in claim 8, wherein the particular
data chunk comprises a plurality of data blocks, wherein each
data block of the plurality of data blocks has a corresponding
inline metadata section, and wherein, within the second
space, the plurality of data blocks of the particular data chunk
are arranged in an alternating sequence with the correspond-
ing inline metadata sections.

10. The system as recited in claim 6, wherein the analysis
comprises a determination of whether a caching state of the
particular data chunk, as indicated within the chunk metadata,
belongs to a particular set of caching states.

11. The system as recited in claim 6, wherein the one or
more hardware computing devices are further configured to:

in response to the determination to bring the storage appli-

ance into the running state,

read into the in-memory metadata region, from the first
metadata location of the appliance, second chunk
metadata corresponding to a second data chunk of the
plurality of data chunks;

update, in response to a detection of a particular indica-
tor within the second chunk metadata, at least a por-
tion of the second chunk metadata in the in-memory

10

15

20

25

30

35

40

45

50

55

60

65

38

metadata region using contents of an inline metadata
location of the appliance prior to accepting 1/O
requests targeted at the second data chunk.

12. The system as recited in claim 11, wherein the particu-
lar indicator comprises a metadata entry stored in the first
metadata location by a cache evictor configured to free at least
some cache storage of the appliance.

13.The system as recited in claim 11, wherein to update the
at least a portion of the second chunk metadata, the one or
more hardware computing devices are further configured to:

compare an instance identifier stored in the second chunk

metadata, indicative of a validity of a data block of the
second data chunk, with an instance identifier stored in
the inline metadata location.

14. The system as recited in claim 6, wherein the appliance
comprises an upload buffer configured to store modified data
of the storage object to be uploaded asynchronously to the
remote storage service, wherein the one or more hardware
computing devices are further configured to:

in response to the determination to bring the storage appli-

ance into the running state, add an entry to the upload
buffer, wherein the entry comprises contents one or
more data blocks of the particular data chunk.

15. A non-transitory computer-accessible storage medium
storing program instructions that when executed on one or
more processors:

in response to a determination to bring a storage appliance

into a running state after an unplanned shutdown,

wherein the appliance is configured to cache a plurality

of data chunks of a storage object of a remote storage

service,

read into an in-memory metadata region, from a first
metadata location of the appliance, chunk metadata
corresponding to a particular data chunk of the plu-
rality of data chunks;

based at least in part on an analysis of a portion of the
chunk metadata, store an indication of a validation
requirement for the particular data chunk;

designate the particular data chunk as being accessible
for input/output (I/0) requests after the indication of
the validation requirement has been stored; and

in response to receiving, after the designation of the par-

ticular data chunk, an /O request targeted to at least a
portion of the particular data chunk, validate at least a
portion of the chunk metadata using a different metadata
storage location of the appliance, prior to a completion
of one or more I/O operations indicated in the 1/O
request.

16. The non-transitory computer-accessible storage
medium as recited in claim 15, wherein the indication of the
validation requirement is stored in the in-memory metadata
region.

17. The non-transitory computer-accessible storage
medium as recited in claim 15, wherein the first metadata
location comprises a portion of a first space on a storage
device, wherein the first space is designated to store contigu-
ous metadata for one or more cached data chunks of the
storage object, including the particular data chunk; and
wherein the different metadata location comprises an inline
metadata section stored in a second space of the storage
device, wherein the second space is configured to store the at
least a portion of the particular data chunk.

18. The non-transitory computer-accessible storage
medium as recited in claim 17, wherein the particular data
chunk comprises a plurality of data blocks, wherein each data
block of the plurality of data blocks has a corresponding
inline metadata section, and wherein, within the second

US 9,268,651 Bl

39
space, the plurality of data blocks of the particular data chunk
are arranged in an alternating sequence with the correspond-
ing inline metadata sections.

19. The non-transitory computer-accessible storage
medium as recited in claim 15, wherein the analysis com-
prises a determination of whether a caching state of the par-
ticular data chunk, as indicated within the chunk metadata,
belongs to a particular set of caching states.

20. The non-transitory computer-accessible storage
medium as recited in claim 15, wherein the instructions when
executed on the one or more processors:

in response to the determination to bring the storage appli-

ance into the running state,

read into the in-memory metadata region, from the first
metadata location of the appliance, second chunk
metadata corresponding to a second data chunk of the
plurality of data chunks;

update, in response to a detection of a particular indica-

tor within the second chunk metadata, at least a por- >

tion of the second chunk metadata in the in-memory
metadata region using contents of an inline metadata
location of the appliance prior to accepting 1/O
requests targeted at the second data chunk.

10

15

40

21. The non-transitory computer-accessible storage
medium as recited in claim 20, wherein the particular indica-
tor comprises a metadata entry stored in the first metadata
location by a cache evictor configured to free at least some
cache storage of the appliance.

22. The non-transitory computer-accessible storage
medium as recited in claim 20, wherein to update the at least
aportion of the second chunk metadata, the instructions when
executed on the one or more processors:

compare an instance identifier stored in the second chunk

metadata, indicative of a validity of a data block of the
second data chunk, with an instance identifier stored in
the inline metadata location.

23. The non-transitory computer-accessible storage
medium as recited in claim 15, wherein the appliance com-
prises an upload buffer configured to store modified data of
the storage object to be uploaded asynchronously to the
remote storage service, wherein the instructions when
executed on the one or more processors:

in response to the determination to bring the storage appli-

ance into the running state, add an entry to the upload
buffer, wherein the entry comprises contents one or
more data blocks of the particular data chunk.

#* #* #* #* #*

